
NULL versus NULL
The following article was taken from: http://www.sqlservercentral.com/articles/Advanced+Querying/2829/.

Because some of the code listings are not fully visible, they are reproduced below.

Listing #5
CREATE TABLE #test (val INT CONSTRAINT unq_val UNIQUE);

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);

(1 row(s) affected)
Msg 2627, Level 14, State 1, Line 4
Violation of UNIQUE KEY constraint 'unq_val'. Cannot insert duplicate key in
object 'dbo.#test'.
The statement has been terminated.

Listing #7
CREATE TABLE #test (val INT CONSTRAINT ck_val CHECK(val < 0 AND val = 0 AND val > 0));

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);

SELECT val
FROM #test
ORDER BY val;

DROP TABLE #test;

 Welcome, P Jasinski My Account :: Briefcase :: Logout Search: Go

Home

Articles

Editorials

Forums

Scripts

Blogs

QotD

SQL Jobs

Training

Active Threads

About us

Contact us

Advertise

Write for us

NULL Versus NULL?
By Michael Coles, 2007/02/26

Total article views: 25707 | Views in the last 30 days: 8324

 Rate this | Join the discussion | Briefcase |
 Print

NULL Versus NULL

In one of the first articles I wrote for SQL Server Central, I talked
about SQL NULLs and three-valued logic (Four Rules For NULL). In

this article I take it all back...

No, not really, but stay tuned as we talk about the darker side of
ANSI NULLs.

The Original Four Rules

The original four rules I proposed for NULL-handling are all

reproduced here in Figure 1.

Figure 1. The original "Four Rules"

The rules are handy guides for handling NULLs in T-SQL, but NULL-

handling isn't always so cut-and-dried. In this article we'll take a look
at where Rule #2 - the basis of the ANSI SQL three-valued logic we
discussed in the first article - breaks down.

No Two NULLs Are Created Equal...

If you recall from the original Four Rules article, the basis of ANSI
SQL three-valued logic (3VL) is that NULL is not equal to anything

else. It is not less than, greater than, or even unequal to anything
else either. Because NULL is not an actual value, but rather a

placeholder for an unknown value, all comparisons with NULL result

in UNKNOWN. Even comparing a NULL to another NULL is just

comparing two placeholders for unknown values, so the result again
is UNKNOWN.

We even generated some samples to demonstrate this. One of these
samples is reproduced here in Listing 1.

Zoom in | Open in new window

Tip: In reference to NULL comparisons, be sure to

keep Rule #3 in mind. Microsoft has deprecated SET

ANSI_NULLS, and according to Books Online it will

be removed in a future version of SQL Server. If you
currently have code that relies on SET ANSI_NULLS

OFF, it might be a good time to start considering what

it will take to make that code ANSI SQL-92 NULL-

compliant.

Listing 1. Demonstrating that NULL is not equal to NULL

Find The Baseball Players
By Steve Jones | Category: Advanced Querying

 | 3,689 reads

When's Your Anniversary
By Steve Jones | Category: Advanced Querying

 | 5,934 reads

Compare SQL Server Databases with
sp_CompareDB
By Additional Articles | Category: Advanced Querying

 Rate this | 884 reads

Tame Those Strings - Part 9
By Steve Jones | Category: Advanced Querying

 | 6,867 reads

Related tags

Advanced Querying

T-SQL

Related content

Page 1 of 5NULL Versus NULL? - SQL Server Central

10/10/2007http://www.sqlservercentral.com/articles/Advanced+Querying/2829/

NULL: Confusing the Smartest People in the World
Since (at least) 1986

If all this doesn't hit home immediately, don't take it too hard. Even
Microsoft seems to have difficulty sorting through it. Point in fact:
SQL Server 2005 Books Online (BOL) still has bad information
concerning NULL comparisons. In fact, as of the time of this writing I

counted no less than ten pages in BOL that stated the result of a
comparison with NULL is either FALSE or NULL. Only two pages that

I found (the pages describing "IS [NOT] NULL" and "SET

ANSI_NULLS") actually got it right. Fortunately we know better: the

result of comparing NULL with anything is UNKNOWN.

So why all the confusion? Most likely it's because in queries only
rows for which the WHERE clause condition evaluates to TRUE are

returned. Rows that evaluate to FALSE or UNKNOWN are not
returned. For some folks this might seem to indicate FALSE and
UNKNOWN are equivalent. They're not, as we'll see in Listings 2 and
3.

SET ANSI_NULLS ON
DECLARE @val CHAR(4)
SET @val = NULL
SET ANSI_NULLS ON
IF @val = NULL
 PRINT 'TRUE'
ELSE IF NOT(@val = NULL)
 PRINT 'FALSE'
ELSE
 PRINT 'UNKNOWN'

Listing 2. Sample SELECT with NULL comparison in the WHERE
clause

The result above of course returns no rows. According to Books
Online this is because "id = NULL" evaluates to FALSE. If this is true,
however, Listing 3 below should return all rows.

SELECT TOP 100 *
FROM sys.syscomments
WHERE id = NULL

Listing 3. The "opposite" of Listing 2

If "id = NULL" really evaluates to FALSE for every row, then "NOT

(id = NULL)" should evaluate to TRUE for every row. Of course it

doesn't, and again no rows are returned. And we already know the
reason: it's because "id = NULL" evaluates to UNKNOWN, and

"NOT(id = NULL)" also evaluates to UNKNOWN.

Microsoft has already been notified of this problem in BOL and
hopefully it will be fixed soon.

SELECT TOP 100 *
FROM sys.syscomments
WHERE NOT(id = NULL)

...All NULLs Are Created Not Distinct

So now we've firmly established that comparisons with NULL never

evaluate to TRUE or FALSE, that NULL is never equal to NULL, and

that NULL comparisons always result in UNKNOWN... Now it's time

to list the exceptions. (You didn't think it would be that simple did
you?)

I really wanted to call this section All NULLs Are Created Equal, but
that just happens to be wrong. In order to simulate NULL equality,

and to keep from contradicting themselves in the process, the ANSI
SQL-92 standard decreed that two NULL values should be

considered "not distinct". The definition of not distinct in the ANSI
standard includes any two values that return TRUE for an equality
test (e.g., 3 = 3, 4 = 4, etc.), or any two NULLs.

This simulated NULL equality is probably most used in the GROUP BY

clause, which groups all NULL values into a single partition. SQL-92

defines a partition as a grouping of not distinct values. Listing 4 below
shows GROUP BY handling of NULL.

Listing 4. GROUP BY and NULL

Page 2 of 5NULL Versus NULL? - SQL Server Central

10/10/2007http://www.sqlservercentral.com/articles/Advanced+Querying/2829/

Figure 2 shows the result.

CREATE TABLE #test (val INT);

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (1);
INSERT INTO #test (val) VALUES (2);
INSERT INTO #test (val) VALUES (3);
INSERT INTO #test (val) VALUES (3);

SELECT COUNT(*) AS num, val
FROM #test
GROUP BY val;

DROP TABLE #test;

Figure 2. Result of GROUP BY with NULLs

Notice the NULL values are all treated as not distinct by GROUP BY,

and are all grouped together. Unique constraints also use the ANSI
definition of not distinct as opposed to equal since you can only insert
one NULL in a column with a unique constraint. Consider Listing 5

which shows this.

Listing 5. Unique Constraint and NULL

This example throws an exception when it tries to insert the second
NULL in the val column:

Other statements and operators that use the concept of not distinct to
simulate NULL equality include:

� PARTITION BY clause of OVER()

� UNION operator

� DISTINCT keyword

� INTERSECT operator

� EXCEPT operator

NULLs Flock Together

The ORDER BY clause in SELECT queries places all NULL values

together when it orders your results. SQL Server treats NULLs as the

"lowest possible values" in your results. What this means is NULL will

always come before your non-NULL results when you sort in

ascending order, and after your non-NULL results when you sort in

descending order. Listing 6 shows ORDER BY and NULL in action.

CREATE TABLE #test (val INT CONSTRAINT unq_val

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);

(1 row(s) affected)
Msg 2627, Level 14, State 1, Line 4
Violation of UNIQUE KEY constraint 'unq_val'. Cannot insert duplicate key in
object 'dbo.#test'.

The GO Command and the Semicolon
Terminator
By Ken Powers | Category: SQL Puzzles

 | 30,011 reads

SQL Server 2005: Intro to XQuery
By Michael Coles | Category: SS2K5 - XML

 | 9,022 reads

Tame Those Strings - Finding Carriage
Returns
By Steve Jones | Category: Advanced Querying

 | 8,159 reads

Like this? Try these...

Page 3 of 5NULL Versus NULL? - SQL Server Central

10/10/2007http://www.sqlservercentral.com/articles/Advanced+Querying/2829/

Listing 6. ORDER BY and NULL

The results are shown in Figure 3.

CREATE TABLE #test (val INT);

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (1);
INSERT INTO #test (val) VALUES (2);

SELECT val
FROM #test
ORDER BY val;

DROP TABLE #test;

Figure 3. Result of ORDER BY with NULL

The same holds true for the ORDER BY clause of OVER, which is

used to order your results when used with ranking functions like
ROW_NUMBER and aggregate functions like SUM.

And Now For Something Entirely Different

Now that we've established the "exceptions" for NULL comparisons,

let's look at something entirely different. When a NULL value is

inserted into a nullable column with a check constraint that doesn't
check for IS NOT NULL, something strange seems to happen.

Consider Listing 7.

Listing 7. Check constraints and NULL

In this example we've added a check constraint to the sample table
that enforces the following rule:

� The value inserted must be less than zero
� *and* the value inserted must be equal to zero
� *and* the value inserted must be greater than zero

You and I know from 4th grade math (remember number lines?) that
there is no value that can ever fulfill these requirements. No value
can be less than zero, equal to zero, and greater than zero all at the
same time. Also based on what we've already talked about, any
comparisons with NULL result in UNKNOWN. You might expect an

attempt to insert any value into the table would fail.

However, check constraints operate under a different set of rules
from the SELECT, INSERT, UPDATE, and DELETE DML statements.

The DML statements, when combined with a WHERE clause, perform

their action only on rows for which the WHERE clause condition

evaluates to TRUE. The DML statements will exclude rows that
evaluate to FALSE or UNKNOWN.

CREATE TABLE #test (val INT CONSTRAINT ck_val CHECK

INSERT INTO #test (val) VALUES (NULL);
INSERT INTO #test (val) VALUES (NULL);

SELECT val
FROM #test
ORDER BY val;

Page 4 of 5NULL Versus NULL? - SQL Server Central

10/10/2007http://www.sqlservercentral.com/articles/Advanced+Querying/2829/

Check constraints, on the other hand, cause INSERT and UPDATE

statements to fail only if the check constraint condition evaluates to
FALSE. This means that the checks will succeed if the condition
evaluates to either UNKNOWN or TRUE.

Of course you'd probably never create a check constraint as
restrictive as the one in the example, and if you want to prevent
NULLs from being inserted into a column, either declare the column

NOT NULL or add "val IS NOT NULL" as a check constraint

condition. Don't expect a check constraint that evaluates to
UNKNOWN to cause an INSERT or UPDATE to fail.

Conclusion

NULL handling hasn't gotten any easier since the Four Rules article,

but it helps to know the exceptions as well as the rules. This article
was written to demonstrate those common exceptions.

By Michael Coles, 2007/02/26
Total article views: 25707 | Views in the last 30 days: 8324

 Rate this | Join the discussion | Briefcase
| Print

Michael Coles is a regular contributor to SQL Server
Central, and author of the upcoming book Pro T-SQL
2005 Programmer's Guide from Apress (in bookstores
everywhere April 2007).

Your response

 Copyright © 2002-2007 Simple Talk Publishing. All Rights Reserved. Privacy Policy. Terms of Use

Page 5 of 5NULL Versus NULL? - SQL Server Central

10/10/2007http://www.sqlservercentral.com/articles/Advanced+Querying/2829/

