
NEXT

Cap
pe

lla
 A

rc
hi

ve
 L

im
ite

d
Edi

tio
ns

Practical PostScript 1 Cappella Archive

 PRACTICAL
 POSTSCRIPT

A Guide to Digital Typesetting

David Byram−Wigfield

The book that printed itself!

The following pages explain the basic techniques of Direct
PostScript typesetting. This electronic version includes some
new material and additional references to the Adobe Portable
Document Format. No previous knowledge of computer
languages is required by the reader.

Cappella Archive
Book on Demand Limited Editions

NEXT

FIRST

BACK

Practical PostScript 2 Cappella Archive

First Printed Edition : 1995
Portable Document Format : 2000

Copyright  2000 David Byram−Wigfield
All rights reserved.

PostScript is a trademark of Adobe Systems Inc.,
which may be registered in certain jurisdictions.

All product names referred to are trademarks of their respective companies.

The PostScript procedures may be copied for non−commercial use, provided
that the above copyright notice appears in all copies and any supporting
documents. The author makes no representations about the suitability of the
described procedures for any purpose and no responsibility is assumed for any
errors or inaccuracies therein.

British Library Cataloguing−in−Publication Data
A catalogue record for the book is
available from the British Library

ISBN 0–9525308–0–5

 COPIES OF THE ORIGINAL BOOK ARE AVAILABLE FROM
 sales@cappella.demon.co.uk

Cappella Archive
The Steps : Foley Terrace : Great Malvern : England

WR14 4RQ

NEXT

FIRST

BACK

Practical PostScript 3 Cappella Archive

Contents
First Principles 8
Dictionaries 13
Daisy−Chaining 15
The Text Box 18
Stretching Spaces 22
Linewrapping 26
Full Justification 29
Errors 31
Fonts or Founts? 33
Halftones 39
Variables 43
Columns and Rules 45
Font Matrices 47
Bitmaps 51
Encapsulation 57
Making a Typeface 61
Drawing Boxes 66
Placing a Graphic 68
Drop Capitals 71
Automatic Text Flow 72
Automatic Footnotes 77
The Minidict 79
Distance Printing 84
Bibliography & Utilities 87
PostScript Glossary 90
Colophon 92

NEXT

FIRST

BACK

Practical PostScript 4 Cappella Archive

Acknowledgements

The Engineering Support Group of Adobe Systems Europe
for patient responses to elementary questions.

The Editor of the Small Printer, the Journal of the British Printing Society
where several of these PostScript discussions first appeared.

PostScript Levels 1, 2, and PostScript 3

Level 2 PostScript was an extension of the original level 1 commands.
Most of the additions were to do with colour printing; sophisticated
methods of manipulating fonts and graphics; printer operators such as
two−sided printing; or Display PostScript instructions for NeXT
computers. The examples in this book are nearly all written in the less
complex PostScript level 1.

PostScript 3 is a Dantesque higher level which creates more compact
PostScript files and may also include device specific instructions for
enhanced imaging, page collation, duplexing, faxing, internet trans−
mission, and even paper folding and stapling.

Despite their variety, all these bells and whistles are secondary to the
actual business of typesetting script, and the procedures described here
should distill into the Portable Document Format or proof print on any
PostScript laser printer.

These pages have been typeset entirely in Direct PostScript and distilled
into the Portable Document Format for on−screen viewing. The
TinyDict Typesetter and associated resources may be downloaded from:

http://www.cappella.demon.co.uk

http://www.cappella.demon.co.uk

NEXT

FIRST

BACK

Practical PostScript 5 Cappella Archive

Introduction
PostScript was developed in 1985 by John Warnock and Chuck Geschke
of Adobe Systems Inc. as a written description of a printed page
interpreted by a computer chip placed inside a laser printer. This
converted the scripted instructions into tiny specks of toner on the
paper. Previous methods of printing had relied on the computer
converting the low definition screen display into a series of printed
squares known as bitmaps.

Desktop printing software, like PageMaker and Quark XPress, was then
designed to convert the bitmapped images drawn or typed on the screen
automatically into PostScript recipies. The result was so successful that
PostScript rapidly became the universal professional printing language
that it is today.

However, the increasingly complex software barrier between the
computer screen and the printer, makes many users unaware of the
elegance, accuracy and efficiency of PostScript as a scripted printing
language; requiring as it does only the simplest of text editors to
communicate directly with the printer interpreter.

This unawareness is compounded by a shortage of manuals suitable for
novices, so in an effort to improve my own knowledge, I originally wrote
some of these examples for the Small Printer, the journal of the British
Printing Society.

The procedures illustrated do not pretend to be the most efficient use of
the PostScript language, but they do try to be easy to understand. Many
shortcuts have been avoided in the interests of clarity and the text and
illustrations were typeset using similar procedures to those described.

NEXT

FIRST

BACK

Practical PostScript 6 Cappella Archive

 Direct PostScript
Computer desktop printing has many advantages over traditional
methods, such as clean hands, composition speed, cut and paste
duplication, and, not least, the avoidance of 'dissing' inky letterpress
typefaces back into cases according to their character and fount; all the
time 'minding one's p's and q's'.

During the late nineteen−eighties, in the early days of computerized
newspaper printing, a coded mark−up was frequently used to format the
copy. The marks were of two kinds; a generalized command, which
chose a pre−determined editorial format (such as Style1), or a
succession of formatting codes specified by the house style of body text,
typeface, linespacing and column width. These were often grouped into
a single macro for swifter keying.

Nowadays, the generalized macro is still used by some mark−up
languages such as TeX and LaTeX for typesetting scientific papers and
an author merely has to type '\chapter' or '\footnote' at the relevant point
in the text for it to be automatically set. On the other hand, the
HyperText Mark−up Language used for internet web pages has specific
typesetting codes such as <H1>.....</H1> even though the actual
typeface read on screen is usually determined by the recipient.

The Direct PostScript procedures described in the following pages
daisy−chain various instructions together to form a typesetting mark−
up method for any operating system. The advantages are that the codes
are simple; the typeset files are always editable, and easily distilled into
the Portable Document Format for commercial printing or internet
transmission.

NEXT

FIRST

BACK

Practical PostScript 7 Cappella Archive

PostScript File Structure
The Document Structuring Conventions

%!PS−Adobe−2.0 % The DSC number does not relate to levels 1 or 2 %
%%BoundingBox: x y x y % image or page area: lower left x y: upper right x y %
%%Title: FileSequence % colons are important %
%%Creator: ttxt % person or application writing file %
%%For: Practical PostScript % useful identifier on a network %
%%CreationDate: 20/12/99
%%EndComments % no colons needed %

%%BeginSetup % printing instructions here %
/defaults save def % place a save marker to isolate file %

 % paste the text file of any dictionary here %
%%EndSetup

%%Page: 1 1 % first figure is the sequence, the second the page number %
 % place one−off graphics or page definitions before opening any dictionary %

dictionaryname begin % no slash %
% text file %

% protect all translations, scaling, rotation and
% changes of colour with a gsave − grestore pair

end % remove dictionary if used %
%%EndPage % Page/EndPage enable re−ordering of printing sequence of the pages %

%%Trailer
showpage % print the page %
defaults restore % restore the condition before the save marker %

%%EOF % end of file %

The Document Structuring Conventions were designed by Adobe to
ensure conformity between PostScript files of different origins. Those
shown above are the bare minimum for a file to be intelligible when read
by a document manager. Files for local use only need the header.

NEXT

FIRST

BACK

Practical PostScript 8 Cappella Archive

First Principles
PostScript is the printing language universally applied to most laser
printers and imagesetters. It was developed in the early eighties by
Adobe Systems Inc. as a command language to provide a written
description of a page of text or graphic images. Because early computers
were of limited processing power, the PostScript interpreter was put
inside a laser printer to convert the script into drawn, not bitmapped,
lines on the page.
 The interpreter contains very wide−ranging arithmetical, graphical and
typographical instructions, and desktop printing applications like Page−
Maker were designed to convert the bitmap on−screen images auto−
matically into the PostScript language. However, few people realize that
fully typeset pages may also be marked−up by hand using a text editor
and printed on any PostScript laser printer or imagesetter.
 One of the problems with PostScript is that the manuals and text books
are written in American Computer Speak, an abstract, unintelligible and
jargon−ridden Humpty−Dumpty language that hinders understanding.
In addition, as users may create their own recipes for every definition,
there is even more scope for confusion.
 PostScript instructions originate from the zero co−ordinate at the
bottom left hand corner of every page. If you get confused, remember the
old army map−reading adage that 'yer wipes yer feet before yer goes
upstairs'. In other words x is always the horizontal co−ordinate and
comes before the vertical y.
 Before we can write the script for an image, our PostScript file has to
have a Header. The %! command wakes up the laser printer and the
Creator identifies the origin of the file. The Prolog holds the save −
restore isolators that protect the normal page defaults, as well as any
permanent definitions we may place in our own files.

NEXT

FIRST

BACK

Practical PostScript 9 Cappella Archive

 The BoundingBox is an invisible rectangle surrounding an image that
measures in points the bottom left and top right hand co−ordinates. For
text, this is normally the page size, but as our image is an individual
item, we must define its boundaries. If you have no points rule, there are
72 points to the inch and a millimetre is just under three points. Don't
make the values too small or the object will be printed clipped.

0 20x

20y

Each square represents one point

x

xx

Here is the Header:–

%!PS
%%BoundingBox: 0 0 20 20
%%Title: Flower
%%Creator: Practical PostScript
%%CreationDate: 17/2/94 10:46 am
%%EndComments % no colons needed %

%%BeginProlog

% − your own procedures here − %

%%EndProlog

 I am going to create this flower. First of all, I'll use PostScript to make a
scrap of graph paper to show you the co−ordinates and then I'll write
the instructions for drawing a box, which will also help to establish the
boundaries. If you want to use the flower on its own, delete the box,
although you will need it for the border.
 Every object must have an initial moveto co−ordinate from which to
start its currentpoint but, once it has been defined, it can then be
translated anywhere on the page; scaled to any larger or smaller size;
stroked to be drawn on an imaginary page and finally printed with
showpage.

NEXT

FIRST

BACK

Practical PostScript 10 Cappella Archive

/box { newpath 0 0 moveto % start new line: page lower left hand xy %
0 20 lineto 20 20 lineto 20 0 lineto closepath
gsave 0 setgray fill grestore % black: gs/gr preserve co−ordinates %
0.1 setlinewidth 0 setgray stroke % for use by the stroke instruction %

} def
Each definition starts with a slash (/), places its instructions between { }
braces and then ends with def. The co−ordinates move in a clockwise
direction and the command closepath encloses the shape which can
then be filled. Setgray gives shades of gray from 0 (black) via 0.5
(mid−gray) to 1 (white). If you have a colour printer you could also set
colour using setrgbcolor.
 The petal is a little more complicated as it has to be centred at zero so
that it can be rotated and repeated to produce the flower. As a result, the
right−hand co−ordinates are echoed negatively for the left−hand side. I
have spaced the xy pairs so you can see them more clearly. The
command newpath breaks any links with a previous image.
/petal { newpath 0 0 moveto 0 0 −7 13 0 7 curveto 0 7 7 13 0 0 curveto closepath
gsave 1 setgray fill grestore 0.1 setlinewidth 0 setgray stroke } def% white fill: black line

 You will notice from the drawing that the middle co−ordinate between
the start and finish of each curveto is considerably outside the line being
drawn; the further the distance, the greater the bulge. One way of
guessing where this point lies is to imagine it as the meeting point of two
tangents crossing the arc of each curve on either side and adjust it after
seeing a printed proof.
 I have set the width of the lines, filled the petals with white, and then
drawn the outline using stroke. Now we will repeat the petal shape and
rotate it to make the flower. As most flowers have an odd number of
petals I will give it five. This will require a rotation of 72 degrees. The
completed flower is then moved 10 points away from the bottom left
hand corner into the centre of the box by using the command translate:

NEXT

FIRST

BACK

Practical PostScript 11 Cappella Archive

/flower { 10 10 translate 5 { petal 72 rotate } repea t} def
 I can put the various elements of flower and box together to make a
border and translate the border to the position on the page where I want
it; indicate the eight boxed flowers I need and translate each one 20
points horizontally (x axis remember!) to sit beside its neighbour.

/border { box flower } def
gsave 50 90 translate 8 {border 20 0 translate} repeat grestore

 Finally, we can print the border using the command showpage and
then restore the page defaults. This Trailer section, as it is sometimes
called, can also include running items that carry over from page to page,
such as footers, logos and page numbers.

showpage defaults restore
 A PostScript laser printer assumes that the user will want normal
co−ordinates and black ink. If these are changed for any reason, there
has to be a mechanism for reverting to the normal default settings. This
is achieved by the mysterious duo gsave and grestore. They hunt in
pairs, like Rosencrantz and Guildenstern or Marks & Spencer, and it is
best if you think of them as a high fence that prevents anything outside
the definition from climbing in, or worse, something nasty crawling out.
 Accordingly, there is a graphic state gsave at the beginning of our little
procedure and a graphic state grestore at the end which do precisely
this. Otherwise, if one definition conflicted with another; the printer
could get its shoelaces tied together, or go into an endless loop and sulk.
Secondly, whenever a line is stroked or a shape filled with colour, its
co−ordinates are 'used up', so that if we wish to do both of these things
to an object like our box, a gsave and grestore pair has to be placed
around anything likely to be used more than once.

NEXT

FIRST

BACK

Practical PostScript 12 Cappella Archive

 To print your flower, type out the file in a text editor or save as Ascii
Text from a word−processor. You will need either an Apple Laser Writer
Utility, or the Adobe PSprinter downloader. If you have an inkjet distill
the file into PDF first using Adobe Acrobat or similar utility.
 The little procedure below produces the border shown. To invert the
colours, change the petal setgrays from 0 to 1 and the black box vice
versa. Choose a suitable point size by altering scale. The defined image
is 20 points, so 0.6 gives a 12 point flower. The empty brace after the
border command is numbered each time the definition is needed.
To sum up; a PostScript definition starts with a slash (/) and ends with a
def and the required action is usually placed between curly braces. Just
to confuse you, numerical data definitions dispense with the braces and
take effect immediately, such as /year 95 def.

%!PS FLOWER BORDER
%%Title: NegativeFlowerBorder
%%BoundingBox: 0 0 22 22
/defaults save def % save preserves the existing printer condition %
/box { newpath 0 0 moveto 0 20 lineto 20 20 lineto 20 0 lineto closepath

gsave 1 setgray fill grestore 0.1 setlinewidth 0 setgray stroke } def
/petal { newpath 0 0 moveto 0 0 −7 13 0 7 curveto

0 7 7 13 0 0 curveto closepath gsave 0 setgray fill grestore % black %
gsave 0.5 setlinewidth 1 setgray stroke grestore } def % white %

/flower { gsave 10 10 translate 5 { petal 72 rotate } repeat grestore } def
/flowerborder { { box flower 20 0 translate } repeat } def % *empty brace %
gsave 50 90 translate 0.6 0.6 scale 26 flowerborder

90 rotate 20 0 translate 15 flowerborder
90 rotate 0 −20 translate 26 flowerborder
90 rotate 20 0 translate 15 flowerborder

grestore showpage defaults restore % restore the previous condition %

NEXT

FIRST

BACK

Practical PostScript 13 Cappella Archive

Dictionaries
 You may remember that I have explained that one problem with
PostScript is that it is often difficult to decipher the procedures you see
written down, because anyone can compile their own variations of the
PostScript definitions. However, it is this ability to redefine that makes it
such a flexible and effective printing language. An instruction like lineto
when reduced to 'li', or even a single letter, will be executed faster
because there are fewer bytes to transmit, but the shorthand makes the
file more difficult to interpret.
 Secondly, you are able to place all your personal redefinitions in your
own dictionary. This may be placed on the top of the PostScript
interpreter dictionary stack whenever you use it and, once the original
commands have been dug out of the printer's own voluminous system
dictionary the first time round, it keeps them on hand, and all
succeeding calls are made very quickly. Whilst such speed increases in
our small files are largely theoretical, the advantage our own dictionary
has for us is that it saves typing repetitive commands and makes our
little procedures much more compact and less wordy.
 Furthermore, because we intend to talk directly to the printer in its
own language, there is no longer the three−fold inefficiency of
recompiling the PostScript language into the graphics or DTP
application dictionaries that convert the bitmapped images drawn on the
screen back into PostScript.
 So, our first venture is to make a shorthand dictionary. This is a useful
exercise which gives a list of the most common graphical commands. All
the abbreviations are reasonably mnemonic, and single letter codes are
avoided, except for those used for typesetting the text.

NEXT

FIRST

BACK

Practical PostScript 14 Cappella Archive

 It took me ages to find out why my first dictionaries didn't seem to
work. What fooled me was the fact that the instruction 'end' not only
means the end of the dictionary but also removes it from the dictionary
stack as soon as it has been made. Similarly, whilst begin means 'begin
to build a dictionary', it has to be produced a second time whenever we
next want to use it. Computers think literally, not laterally!
 We give the dictionary a name; reserve some memory by indicating
how many entries there are likely to be; tell the interpreter what we are
doing by using dict, and then load in our own shorthand entries. I have
not put a setgray with setlinewidth, so that we get a black line by
default. It is then only necessary to define setgray for any change in
colour or a fill.

%!PS SHORTHAND DICTIONARY
%%Title: minidict
%%Creator: Practical PostScript
/minidict 24 dict def minidict begin % reserve some memory: open the dictionary %

/ld { load def } def % transfers the system command to the minidict %
/gs /gsave ld /gr /grestore ld % isolate translation, scaling and colour changes %
/np /newpath ld /cp /closepath ld % np = new line: cp = enclose polygon %
/mt /moveto ld /rt /rmoveto ld % rt = move relative to previous position %
/li /lineto ld /rl /rlineto ld % rl = draw line relative to previous position %
/ct /curveto ld /tr /translate ld % tr moves the 0x 0y co−ordinate to a new position %
/st /stroke ld /set { gs setlinewidth st gr } def % use # set %
/gray {gs setgray fill gr} def % use # gray %
/ro /rotate ld /rp /repeat ld
/box { np mt rl rl rl cp set }def % composite box command: no fill %
/circle { np arc set }def % composite circle command: no fill %

end % complete building the dictionary %

NEXT

FIRST

BACK

Practical PostScript 15 Cappella Archive

Daisy−Chaining
 Another method of increasing efficiency is to place frequently used
instructions under one definition. A box could be defined as:

/box { newpath moveto lineto lineto lineto closepath setlinewidth stroke } def
 You will also notice that there are no co−ordinate or setlinewidth
values and these must be provided in reverse order when you wish to
make a box.
 Imagine you are writing your instructions on separate pieces of paper
and throwing them into the wastepaper basket. When you look at them
in a pile, the last, setlinewidth, is on top and the first, newpath, at the
bottom, and this is the way the printer sees them. A 20 point square box
with a border one point wide, placed 72 points (one inch) from the
bottom left hand corner of the page will have values typed in reverse:

1 72 92 92 92 92 72 72 72 box
 Adding co−ordinates together whilst walking backwards makes for
accidents, and we could use the instruction rlineto instead. Each
clockwise corner of the box becomes zero in turn, so that the bottom
right hand corner is minus relative to the top right hand corner, like this:

/box { newpath moveto rlineto rlineto rlineto closepath setlinewidth stroke } def
1 0 −20 20 0 0 20 72 72 box

 Fortunately these rather tedious level one processes have been super−
seded by the later level two commands, rectfill and rectstroke, which
extract all the movements from the lower left and upper right hand pairs
of co−ordinates. The box may now read as:

/box { 1 setlinewidth 0 0 20 20 rectstroke } def

NEXT

FIRST

BACK

Practical PostScript 16 Cappella Archive

but it has to be placed in its correct position on the page by a translation
from the bottom left hand corner; the translation being isolated by a
gsave−grestore pair.

gsave 50 100 translate box grestore
 One of the most useful PostScript commands is arc, which defines a
circle. It is made up of the xy co−ordinates at the centre, the radius, and
the angles through which the circumference is drawn. For example, 100
100 20 0 90 will draw a quarter arc from three o'clock to twelve oclock. If
0 and 90 change places then three quarters of a circle would be drawn
from twelve o'clock to three o'clock via six o'clock. Like all the best
magic, the line is drawn widdershins, or anti−clockwise. If you prefer
not to wear garlic, then arcn will take you the other way round.
 The procedure below draws a series of circles as a border. The design is
copied from wrought iron gates in St John Lateran in Rome and I have
provided a positive image to show off the lace−like effect of the design.
It would look well as a hot foil or book−binding decoration. I have
written out each step in full, so you can work out what is going on. For a
negative image, you will need to change the circle setgrays from 0 to 1
and the box contrariwise. Alter scale to make the point size larger or
smaller but only use it after translate, not before. If you don't, you will
only get partly across the landscape page.
 Strictly speaking, in such a little procedure like this, gsave and grestore
are superfluous; the save − restore minders giving sufficient page
protection. However, it is a good idea to get into the habit of bracketing
all translations, scaling, changes of colour and fills with gsave −
grestore. Remember, a definition will only take effect when the defined
command word is subsequently used on its own without the slash.

NEXT

FIRST

BACK

Practical PostScript 17 Cappella Archive

%!PS A LACE BORDER
%%Title: St.John'sCircles
%%BoundingBox: 0 0 335 200
/defaults save def
/bigcircle { 12 12 8 0 360 arc 0 setgray 0.1 setlinewidth stroke } def
/littlecircle { 12 12 3 0 360 arc 0 setgray 0.1 setlinewidth stroke } def
/rbox { −7 0 moveto 0 199 rlineto 299 0 rlineto 0 −199 rlineto closepath

0.1 setlinewidth stroke } def
/twocircles { bigcircle littlecircle } def
/whiteborder { { twocircles 11 0 translate } repeat } def
gsave 70 95 translate rbox 0.6 0.6 scale % box before scale %

43 whiteborder
90 rotate 11 −13 translate 28 whiteborder
90 rotate 11 −13 translate 43 whiteborder
90 rotate 11 −13 translate 28 whiteborder

grestore showpage
defaults restore

NEXT

FIRST

BACK

Practical PostScript 18 Cappella Archive

The Text Box
 I thought this was as suitable moment to learn how PostScript prints
text on the page. Accordingly, our first task is to set up the four margins
which define the area of the page where we wish to print. This area is
sometimes also known as a text frame or text block. The left hand and
bottom margins are set at zero to calculate the line length and textbox
heights. As you will see, alteration of these values allows the insertion of
indents and footnotes.
/textbox { % start definition: command word: left hand curly brace %
/lm 0 def /tm 300 def /rm 160 def /bm 0 def % margins %
/lg 10 def lm tm moveto % 10 pt linespacing: go to top left hand corner %
} def % close definition: right hand curly brace: definition abbreviation %

 I could, of course, use some actual lower left and upper right page
co−ordinates, such as 50, 50, 206, 350, but then I would have to enter
new numbers every time I moved this digital galley elsewhere on the
page. As zero is always at the bottom left hand corner of the textbox, I
can use 'translate' to slide it wherever I wish on the paper.
 Be careful if you wish to translate the textbox area to another position.
You must remember to put the isolating twins gsave and grestore before
and after each translation so as to preserve the normal page co−
ordinates; otherwise you will find yourself over by the window. If you
want a longer textbox, increase the size of the top margin to stretch the
textbox towards the top of the page. Some 842 points will take you to the
top of portrait A4, but you will need to deduct the amount you are
leaving as a footer at the bottom of the page.
 Next, we have to instruct the text to move onto a new line. What we do
is to recall the defined top margin y value (300), subtract 10 points by
using 10 sub (290); to issue a new definition for tm; tell it to exchange
the old value of tm for the new one; recall the left margin lm (6) and the

NEXT

FIRST

BACK

Practical PostScript 19 Cappella Archive

new tm (290) and ask the printer to use these new co−ordinates with the
moveto command.

/newline { tm lg sub /tm exch def lm tm moveto } def
 Notice that it is very important to use the textbox command before you
start typing any text, otherwise the printer does not know where to pitch
camp until it gets the first moveto command incorporated in the
definition. Eventually, we shall include the default typeface and make a
page command that will open the first textbox automatically, as well as
find an easier method of varying the margins.
 To persuade the printer to find an 8 point Times Roman, we either
issue the level one command: /Times−Roman findfont 8 scalefont or the level
two: /Times−Roman 8
 Because this instruction is for immediate use, it does not require def or
any braces around it. Printing text is now very easy. Having already got
our initial moveto, all we do is write our text between ordinary brackets.
The command show paints the text on the page, as stroke does for
graphics, and the document is finally printed by the command show−
page, as usual.
 I have redefined newline as L for linespacing because I often need to
advance some lines without any text, and the printer would blow me a
raspberry if it found no text to print. Typing may also be made simpler
by abbreviating the system command 'show' and loading it into our own
dictionary.

/s /show load def /L { newline } def /n { s L } def
 One of the most tedious letterpress jobs used to be the centering of text.
Fortunately, by using PostScript, little electrons will rush about doing all
our calculations.
 There is a magical PostScript command called stringwidth. It takes a
length of text, compares it with the character widths of the chosen font
and then trots back with a points measurement of the line.

NEXT

FIRST

BACK

Practical PostScript 20 Cappella Archive

 In order to centre text, we duplicate stringwidth, (as we lose one length
in the calculations and need the other to print from); remove the
unnecessary height zero with the explosive instruction pop and divide
the text length by 2. Then we subtract the left from the right margin to
give the width of the textwidth and divide by 2 to halve it. Exch swaps
the two numbers round to subtract the half length of text from the half
textbox width. We are left with a number that is the x we need with the
y of tm to move the start of the line to its new position relative to the
centre of the textwidth.
/centre {

dup stringwidth pop 2 div % measure length of text: pop the vertical y: halve %
rm lm sub 2 div % linewidth: subtract left from right margin: halve %
exch sub lm add tm moveto % swap round: subtract: add left margin: move %

} def % complete definition %
/c { centre n } def % abbreviated centre command: print: move to nextline %

It is at this point your enthusiasm for PostScript starts to flag. What on
earth is all this popping and exchanging about?
 The screenshot below gives us an intimate peep inside a PostScript
stack and shows what happens after the instruction 'dup stringwidth' is
made. The textstring is at the bottom, with its vertical and horizontal
measurements above. Pop throws away the zero vertical value and three
pops would remove everything As we can only ever work on the top
item of the stack, exch swaps the first and second numbers round when
needed.
 There you are. Here is a simple programme that some basic typesetting
forordinary text files without the need for any expensive soft or
hardware. Save to disc and download to the printer or distill.

NEXT

FIRST

BACK

Practical PostScript 21 Cappella Archive

%!PS THE TEXTBOX
%%Title: ADigitalGalley
%%BoundingBox: 0 0 160 300
/defaults save def
/textbox { /lm 6 def /bm 0 def /rm 156 def /tm 300 def lm tm mt } def
/newline { tm 10 sub /tm exch def lm tm moveto } def
/centre { dup stringwidth pop 2 div linewidth 2 div exch sub lm add tm moveto } def
/n { show newline } def /c {c entre n } def /s {s how } def /L { newline } def
gsave 50 90 translate textbox % 50 points from the left: 90 from the bottom %

/Times−Roman findfont 8 scalefont setfont
(Even spacing is of more importance typo−) n
(graphically than equal length. Even spacing) n
(is a great assistance to easy reading; hence) n
(its pleasantness, for the eye is not vexed by) n
(the roughness, jerkiness, restlessness and) n
(spottiness which uneven spacing entails,) n
(even if such things are reduced to a mini−) n
(mum by careful setting.) n L

/Times−Italic findfont 8 scalefont setfont (An Essay on Typography) c
/Times−Roman findfont 8 scalefont setfont (Eric Gill) c
grestore showpage defaults restore

Even spacing is of more importance typo-
graphically than equal length. Even spacing
is a great assistance to easy reading; hence
its pleasantness, for the eye is not vexed by
the roughness, jerkiness, restlessness and
spottiness which uneven spacing entails,
even if such things are reduced to a mini-
mum by careful setting.

An Essay on Typography
Eric Gill

NEXT

FIRST

BACK

Practical PostScript 22 Cappella Archive

Stretching Spaces
 Whilst several PostScript recipes exist for word−wrap and full
justification, they contain very elaborate boolean algebraic − if − true −
false loops and an entire paragraph has to be typed before any
calculations can take place. For the moment, I want to keep things as
simple as possible and describe what happens when a line of text is fully
justified. We use the inbuilt PostScript 'widthshow' command, which
will move any selected character a chosen distance from its neighbour.
 In order to justify a line of text, we need to move each space nearer or
further from its neighbouring word horizontally but not vertically. The
full instruction would read:

 distance x / distance y / space ascii number / (text) widthshow
 To make typesetting easier, the vertical zero and the space ascii
number (32) may be combined and the widthshow instruction abbrevi−
ated. The value of h now represents the thickness of the lead spaces that
would have been added to the same text by the old letterpress
compositors.

/h { 0 32 } def % e.g. 1.5 h (some spaced text) w
 At the end of each adjusted line, the letter w abbreviates widthshow.
As it includes the show command, it is not necessary to add another s
for show. Indeed if you do, the printer will ignore any following text in a
fit of pique. For the same reason, use L for linespacing, not newline. The
h and w are repeated for each line that needs stretching or reducing.
Don't hesitate to use decimal sizes, and a minus number will naturally
tighten an overlong line.

The spaces in this line of text are at the normal spacing.
The spaces in this line of text are stretched by 1.5 points.
The spaces in this line of text are stretched by 2.5 points.
The spaces in this line of text are reduced by 0.2 points.

NEXT

FIRST

BACK

Practical PostScript 23 Cappella Archive

 Book page justification is a skilled art in itself and compositors of old
could avoid starting a paragraph at the bottom of a page and bring back
carried−over single words, (otherwise known as 'orphans' and 'widows'
respectively) by adjusting the spacing of a previous paragraph some−
times three pages beforehand.
 Magazines and newspapers justify by altering the space between the
letters as well as the distance between the words. This is a process
known as 'tracking' and concertina−ing see−saw lines like the next one
are common, especially when hyphenation is turned off. Except
for headlines, such a practice was never used in letterpress printing and
Eric Gill's strictures are still relevant today.
 To use the galley, type the Minidict into SimpleText, or a similar text
editor, and save to disc. Then, select your newline and textbox sizes;
translate the textbox where you want, remembering to use the twins
gsave and grestore each time to preserve the default co−ordinates. Type
in your text, using n at the end of each line, for the moment guessing
when to word−wrap on to the next line. If you alter the margin
distances, do the same to the box, if you want to rule round the text.
Download with the LaserWriter Utility or distill into PDF.
 PostScript printers are notorious sticklers for accuracy and will throw
Courier at you with the slightest provocation. To persuade them to get
the correct typeface out of the basement, you must type the correct
PostScript name, beginning with a slash, even if it is the digitized
version of Melior used here called /ZapfElliptical711BT−Roman

NEXT

FIRST

BACK

Practical PostScript 24 Cappella Archive

/defaults save def % set a save marker %
minidict begin % see next page %

page % open page and textbox %
9 /Times−Roman F

(This is some text ragged right;) n
(this is some centered;) c
(this is some ragged left.) r
(To justify a line of text, first proof it) n
(ragged right and then use) s

9 /Times−Italic F (widthshow) s
9 /Times−Roman F (in) n

(order to change the spacing between the) n
(words. Any one used to letterpress will) n
(find it easy and be pleased that hyphen−) n
(ation is entirely under their control, but) n
(should make sure they select the type) n
(face needed before justifying.) n
L % advance an empty line %
showpage defaults restore

This is some text ragged right
this is some centered

this is some ragged left.
To justify a line of text, first proof it
ragged right and then use widthshow in
order to change the spacing between the
words. Any one used to letterpress will
find it easy and be pleased that hyphen-
ation is entirely under their control, but
should make sure they select the type
face needed before justifying.

1.5 h
(To justify a line of text, first proof it) w L
0.4 h
(ragged right and then use) w
9 /Times−Italic F
(widthshow) s
9 /Times−Roman F (in) n
−0.3 h
(order to change the spacing between the) w L
0.3 h
(words. Any one used to letterpress will) w L
0.4 h
(find it easy and be pleased that hyphen−) w L
0.3 h
(ation is entirely under their control, but) w L
1.35 h
(should make sure they select the type) w L
(face needed before justifying.) n

To justify a line of text, first proof it
ragged right and then use widthshow in
order to change the spacing between the
words. Any one used to letterpress will
find it easy and be pleased that hyphen-
ation is entirely under their control, but
should make sure they select the type
face needed before justifying.

NEXT

FIRST

BACK

Practical PostScript 25 Cappella Archive

%!PS WORD SPACING
%%Title: A simple Minidict
%%Creator: Practical PostScript
%%EndComments
%%Prolog
/minidict 45 dict def minidict begin% the typesetting instructions created so far %
/ld { load def } def % load system commands into the minidict %
/gs /gsave ld /gr /grestore ld /gray {gs setgray fill gr} def
/li /lineto ld /rl /rlineto ld /ct /curveto ld/set { gs setlinewidth st gr } def
/mt /moveto ld /tr /translate ld /np /newpath ld /cp /closepath ld
/st /stroke ld /rp /repeat ld /ro /rotate ld /rt /rmoveto ld
/box { np mt rl rl rl cp set } def /circle { np arc set } def

/newline { tm lg sub /tm exch def lm tm mt } def % leading 12 pts %
/centre { dup stringwidth pop 2 div linewidth 2 div exch sub lm add tm mt } def
/right { dup stringwidth pop rm exch sub tm mt } def /r { right n } def
/s /show ld /n { show newline } def/L { newline } def % advance a line %
/c { centre n } def /kern { 0 rmoveto } def /k { kern } def% plus or minus # k %
/F { findfont exch scalefont setfont } def % pointsize # /FontName F %
/w /widthshow load def /h {0 32} def % use # h (text) w %
/textbox { /lm 0 def /bm 0 def /rm 156 def /tm 300 def /lg 12 def lm tm moveto } def

% Create some opening and closing instructions: 'end' removes the minidict %
/page { gsave 50 72 translate textbox } def % move 50 pts right, 72 pts up %
/close { grestore showpage end } def % defaults: print: remove dictionary %
end % of dictionary %
%%EndProlog % save a copy of minidict Prolog %

NEXT

FIRST

BACK

Practical PostScript 26 Cappella Archive

Line Wrapping
 So far, we have constructed a textbox to place the text on the page;
made commands for centering text and selecting fonts, as well as moving
up and down the page. In order to typeset properly, we will obviously
need some form of linewrap to break paragraphed text into lines that suit
the textbox width, as well as a method of justification that does not need
the calculator between our ears.
 If we have some text which is too long to fit the textbox width, each
word in turn has to be measured; its position compared with the textbox
width and then printed, with any excess carried over to the next line or
next page. We shall need some electronic helpers.
 First I have to define a space, as I need to measure the distance
between each space on the line rather than the individual words. This is
done by a space counting procedure to find out how many spaces there
are by rolling and looping through the text.

/space () def % define a space %

/spacecount { 0 exch () { search { pop 3 −1 roll 1 add 3 1 roll } { pop exit } ifelse } loop } def

 After the spaces have been counted, they are searched for a second
time one by one. The commands stringwidth and currentpoint are
abbreviated and the unnecessary vertical y popped each time. The dup
duplicates the word which would otherwise disappear after being
measured. Now we can print it flush left, or ragged right as some prefer
to call it.

/dsp { dup stringwidth pop } def % measure the text %
/cpp { currentpoint pop } def % where are we? %

/S { dup spacecount { ssp dsp cpp add rm gt { L s s }{ s s } ifelse } repeat pop } def
/P { S L } def % paragraph advance %

 The S code uses ssp to search for the first space; measures the word
with dsp; finds where it is with cpp; adds the two together; looks at the

NEXT

FIRST

BACK

Practical PostScript 27 Cappella Archive

textwidth rm; and makes a boolean true or false with a gt 'greater than'. If
the answer is false, the word and its accompanying space are placed on
the line by the two s abbreviations for show. If the reply is true, then an
advance is made to the next line and the process repeated until there are
no more spaces left.
 A line advance is combined with the linewrap to form the flush left
paragraph command P. Add a space at the end of a paragraph otherwise
the last word will disappear into a digital limbo and not be printed.
Later, a page jump will carry out another 'greater than' boolean, this time
to start a new page when the bottom line of the textbox is reached.

% paste the minidict here %
minidict begin

page % open a page and textbox %
9 /Times−Bold F % specify bold typeface %
(Wordwrap) c L % centre: advance a line %
9 /Times−Italic F % size /FontName F %

(The minidict page command moves the
textbox to the place chosen by the
translation values. Change your typeface
and pointsize as you wish. Use a space −
backslash − return at the end of each line if
your text editor does not automatically
wordwrap on screen. The paragraph is typed
between parentheses, otherwise known as
brackets.) S L
showpage end % prints: removes dictionary %

Linewrap

The minidict page command moves the textbox to
the place chosen by the translation values.
Change your typeface and pointsize as you wish.
Use a space - backslash - return at the end of
each line if your text editor does not
automatically linewrap on screen. The paragraph
is typed between parentheses, otherwise known
as brackets.

Notice the space before the closing bracket;
this is important before P or J codes. The
linewrapping calculations are based on the
number of words plus adjoining space. If a
final space is not present the previous word
will disappear into digital limbo.

NEXT

FIRST

BACK

Practical PostScript 28 Cappella Archive

The text is duplicated and a zero number of
spaces placed on the stack. When the first
space is found the zero would be
incremented by 1. If the spaces and words
found so far are less than the width of the
line a 'true' boolean returned, and the space
detached from the previous word.

The 'true' is popped and for unjustified text
the word and space would be immediately
placed on the page by a 'show' instruction.
For fully justified text, the first word and
space have to be stored and the stack is
rolled so that the spaces in the remaining
text may be counted.

NEXT

FIRST

BACK

Practical PostScript 29 Cappella Archive

Full Justification
 Fully justifying text to left and right at the same time as line−wrapping
is quite complicated because the spaces between the words have to be
stretched to make the text fit the width of the line. In this event, the
correct number of words are stored in a digital cupboard until the end of
the line is reached, glued back together, and then spaced an equal
distance apart. Any remaining words are carried over and justified in the
same way except for the last line of the paragraph, which is printed
normally flush left.
 The justification word−gluing uses a complex PostScript concatenation
which joins two strings of text together. The 'index' instruction dup−
licates specified items; 'length' measures the two sets of text; whilst
'putinterval' puts the combined lengths into a one textstring.

/glue { 2 copy length exch length add string dup 4 2 roll 2 index 0 3 index
putinterval exch length exch putinterval } def

/TXT { /txt exch def } def () TXT % digital cupboard of variable size %
/rejoin { ssp exch glue } def % find next word and rejoin to space %
/measure { dsp txt stringwidth pop add textwidth 2 add gt } def
/join { txt exch glue TXT } def % add word to previous text %

 The full justification process is 'a small thing but mine own' and I'll
explain what happens. It finds a space; glues it back onto the previous
word; measures both; checks against the textwidth; rejoins them to any
previous words and spaces; adjusts the spaces if the end of the line has
been reached; checks the line position in relation to the bottom margin;
places the text, moving to a new page if necessary; repeats the same
calculations for the remaining lines; prints the last line flush left, and
finally, moves into position for the next paragraph! An empty digital
cupboard is started for the following line or paragraph by using () TXT.

NEXT

FIRST

BACK

Practical PostScript 30 Cappella Archive

/jproc { dsp textwidth exch sub exch dup spacecount } def % count the spaces %
/popzero { dup 0 eq { pop }{ div } ifelse } def % if only one space, remove it %
/justify { jproc 1 sub 3 2 roll exch popzero h 4 3 roll w L } def % stretch the spaces %
/nextline { txt justify () TXT join } def % print previous line: transfer overlong word %
/J { dup spacecount { rejoin measure { jump nextline } { join } ifelse } repeat txt n () TXT pop } def
/j { dup spacecount { rejoin measure { nextline } { join } ifelse } repeat txt n () TXT pop } def
/fj { dup spacecount { rejoin measure { nextline } { join } ifelse } repeat txt justify () TXT pop } def

The lower case j instruction does not page jump and enables a footnote
to stay on the same page with its associated text. It is also useful for
inserting a different typeface into a line of justified text as I have done
in this paragraph. The 'jump' procedure can be found on page 72.
 The force justify command, fj, does not page jump either, so that it may
if necessary force justify the last line on a page of text which has been
pasted in rather than auto−flowed. It will also deal with individual lines
and stretch spaced letters like this. Remember to add a space after the
final letter, before the closing bracket.
J U S T I F I C A T I O N

NEXT

FIRST

BACK

Practical PostScript 31 Cappella Archive

Errors
 I find it helps to think of a PostScript interpreter as containing a series
of Chinese boxes, one inside the other. The innermost box contains the
System dictionary holding most of the PostScript operating commands
as well as subsidiary built−in dictionaries for such things as error
procedures and switch−on status.
 A second box holds the User dictionary where printer specific
instructions such as the number of copies may be user−defined, as well
as space for dictionaries of our own. Definitions affecting page layout are
also placed here, which may be such things as the paper orientation;
automatic page numbering, and tiling translations for, say, the top right
hand quarter of a folded broadsheet.
 If we build our own dictionary, as we do with the Minidict, then we
can create a third box. As well as out own typesetting definitions, this
may copntain abbreviations for frequently used system instructions to
speed up the interpreter thinking process and avoid constant searching
throught the lengthy System dictionary. We can, of course, place another
dictionary within, or after another dictionary, to separate different
procedures for graphics or typesetting.
 A fourth box holds the interpreter stack that contains whatever is typed
on screen. The printer interpreter tries to send it somewhere else, either
as data, an instruction, or as a textstring. If the interpreter has been
given inadequate or inaccurate instructions, then it will pout, fold its
arms and do nothing.
 The most common error is a human one; with such infelicities as a
misspelling, an unbalanced bracket, or a missing backslash. This is
usually the reason for the word 'typecheck' or 'get' on the interactive
screen or feedback window. A 'stringwidth' error suggests either no
chosen font or an unused number is sitting on top of a line of text; a

NEXT

FIRST

BACK

Practical PostScript 32 Cappella Archive

'show' error that there is no text to be measured. The solution to most
stack problems is to type the word 'pop' to get rid of the offender. If that
does not work, 'clear cleardictstack' will empty the box and 'grestoreall'
should allow a fresh start.
The fifth box contains the moveto, translation and scaling co−ordinates
and these are usually removed by a restore or a grestore. It is for this
reason that I carefully insulated textboxes and pages from each other
with a gsave − grestore pair to avoid any conflict of movement. There is
actually a sixth box which holds all the typeface and font information,
but for the moment, the less said about that one the better.

NEXT

FIRST

BACK

Practical PostScript 33 Cappella Archive

Fonts or Founts?
 I suppose one definition of a fount would be sized sets of individual
letters of the alphabet, cast from typemetal, that are collectively very
heavy and only available from a diminishing number of devoted
typefounders. A fount, once it has been typeset, has to be redistributed
into its upper and lower cases, with everyone minding their p's and q's.
A font, on the other hand, is a digital reconstruction of an historic or
contemporary typeface, with its protective creator breathing litigious
copyright fire in all directions like a dragon with halitosis.
 Some people collect fonts or founts as others do stamps; not so much in
the hope of ever using them, but in the desire to hug them to a
proprietorial bosom. Antique dealers break up wooden elephant poster
founts for the decoration of lounge bars, whilst over−imaginative
desktop publishers create increasingly distorted fonts with the zeal of
Victorian circus promoters.
 So, how do you make your very own font? The answer, in general, is
don't bother, unless you have unlimited time and access to such
software as Font Studio or Fontographer, which take the hard work out
of creating the sidebearing values.
 In the hand punchcutting days, it used to take nine months² to give
birth to a set of punches for a typeface. Monotype maintain that it still
takes the same length of time to create a 150 character electronic
alphabet, with its full complement of roman, italic and bold families.
Nevertheless, there are rare occasions when existing typefaces are
neither suitable nor available. I have had to make a Gregorian font to
print medieval Plainsong.

NEXT

FIRST

BACK

Practical PostScript 34 Cappella Archive

There are four ways to create a digital alphabet. The first is to make a
bitmap of each pointsize and, before the recent development of the
Adobe Type Manager, these were essential for monitor display and dot
matrix printing. Bitmaps work on the principle that an electric switch is
either on or off, because computers can only count on two electronic
fingers. The number 1, 0001, means three pixels off and one on; whilst
1111, (8+4+2+1=15), means all on.
 Each group of four binary numbers can represent sixteen variations of
four pixels alternating between black or white. However, as our eyes
would glaze over looking at sequences of zeros and ones, they are
converted into hexadecimal numbers which count in sixteens. The
relationship between hexadecimal and binary numbers and pixel
bitmaps is shown in the illustration, with an outline for comparison.
Hexadecimal conversion is in the column on the right.

bytes

hex 1st 2nd
hex binary

 0 0 0000
EF 11101111 1 1 0001
CF 11001111 2 2 0010
8F 10001111 3 3 0011
0F 00001111 4 4 0100
8F 10001111 5 5 0101
8F 10001111 6 6 0110
8F 10001111 7 7 0111
8F 10001111 8 8 1000
8F 10001111 9 9 1001
8F 10001111 10 A 1010
8F 10001111 11 B 1011
8F 10001111 12 C 1100
8F 10001111 13 D 1101
8F 10001111 14 E 1110
07 00000111 15 F 1111

The relationship between hexadecimal and binary numbers

 Until recently, a computer took its diet of information in two such
binary four figure bits; known as a byte. More modern machines
consume very much more with each mouthful, using what is curiously
called 32 bit architecture. I would like to believe that half a byte is called
a nibble.
 The second method is to construct a font from straight and curved
lines, and such typefaces as Avant Garde, Helvetica and Courier, are

NEXT

FIRST

BACK

Practical PostScript 35 Cappella Archive

typical examples. It is not usually possible to convert these into an
outline font on the page.
 Outline fonts, like the example shown, are a series of lines and curves
drawn round the outside of a letter which is then subsequently filled
with black. This can be changed to any other colour or shade of gray.
Each letter is treated as an individual graphic shape. There are some
problems; the bowl of a p or g must avoid being filled by the creation of
a circle or oval.
 The fourth method is a recent variation of the third. Instead of creating
a complete outline for each character, constructional items, such as
stems and serifs, are held in a library of shapes and combined to form
different letters or even typefaces.
 It is helpful to think of the PostScript programming language as a series
of boxes, one inside the other, and the font cache is such a box. It
contains all the font information about a particular typeface, including
its character widths, its kerning co−ordinates and so on, and has the
virtue of processing such information extremely quickly.
 If we can convert logos and frequently used graphic objects into a font
character, they can be placed with a keystroke and scaled in size just
like a proper font. So, as a start, our simple QuadFont will contain the
following characters: a bullet; a circle; an em fixed space; a quad square
box; a rule and two crossword squares. The em space is very useful for
indents and accurate spacing; the rule will always keep its place in the
text; the quad box is useful for check lists; the bullet is a popular
emphasis and the crossword squares are something different.
 First, we create a font dictionary and give our typeface a name. It is
defined as a type 3 font because it is a home−made one, unlike type 1
which are the professional ones. A matrix measures the xy coordinates,
which in this instance are one thousandth of a point. Oh, yes they are!
The Font Bounding Box covers the area of all the characters placed on

NEXT

FIRST

BACK

Practical PostScript 36 Cappella Archive

top of each other. If we were creating letters with long descenders and
swashes then the 0 0 left hand co−ordinates would become minus
numbers, such as −150 −140.
All 256 characters are first encoded as not defined, but we change our
minds and code the letter b as a bullet, c as a circle, m as the fixed
space, and so on. Each time we do so, we have to duplicate the coding
sequence except, please note, for the last time. Next, we write the
PostScript procedures to define the characters and specify the remaining
248 notdefined characters as fresh air. I apologise for the jargon of the
Build Char section. Think of it as an incantation putting everything we
have constructed inside the font cache, using the word setcachedevice.
 Normally a unique matrix has to be built for each character. However,
as all our characters occupy an identical quad space, a square of one
thousand units will suit them all. The first pair of matrix numbers
determines how close the letters are together. As we are operating in a
one thousand unit square, 800 by 800 is an average character body size
to avoid crashes between the descenders and ascenders of adjoining
lines.
 The x horizontal distance of 1000 units allows a clearance of 200 units
between each character. If the number was only 375, each successive
750 quad box would be printed halfway over the previous one. However,
the crossword squares naturally occupy the full thousand unit area. The
line /QuadFont exch definefont pop creates the font so that we can use
it. If you get an error message here, the font dictionary may have too
many entries, if so, increase the dict value at the beginning. The line
itself will invariably be correct.

NEXT

FIRST

BACK

Practical PostScript 37 Cappella Archive

%!PS QUAD FONT
%%Title: QuadFont
%%Creator: Practical PostScript
40 dict begin
/FontName /QuadFont def
/FontMatrix [.001 0 0 .001 0 0] def % 1/1000 of a point: note square brackets %
/FontType 3 def % home−made font %
/FontBBox [0 0 1000 1000] def % lower left: upper right: note square brackets %
/BuildChar {exch begin % curly braces %
1000 0 0 0 1000 1000 setcachedevice % width : lower left: upper right %
Encoding exch get load exec end} bind def % bind makes values permanent %
/Encoding 256 array def 0 1 255 {Encoding exch /.notdef put} for % note point %
Encoding
dup (b) 0 get /bullet put dup (c) 0 get /circle put
dup (m) 0 get /em put dup (q) 0 get /quad put
dup (r) 0 get /rule put dup (X) 0 get /squareblack put
 (x) 0 get /squarewhite put % no dup for last one %
/CharDefs {/.notdef { } def % defines all 256 characters as notdefined %
/bullet {375 375 200 0 360 arc fill} def % 200 unit radius: alter to suit %
/circle {375 375 380 0 360 arc 20 setlinewidth stroke} def % 380 radius %
/em { } def % fixed space %
/quad {newpath 0 0 moveto 0 750 rlineto 750 0 rlineto 0 −750 rlineto closepath
20 setlinewidth stroke} def
/rule {0 375 moveto 1000 0 rlineto 20 setlinewidth stroke} def
/square {newpath 0 0 moveto 0 1000 rlineto 1000 0 rlineto 0 −1000 rlineto closepath}def
/squareblack {square gsave fill grestore 20 setlinewidth stroke} def
/squarewhite {square 20 setlinewidth stroke} def
} def
CharDefs % important: no setgrays allowed in any character definitions %
currentdict end % no 'dict begin' needed for fonts %
/QuadFont exch definefont pop % creates the typeface %

NEXT

FIRST

BACK

Practical PostScript 38 Cappella Archive

Using the QuadFont

/QuadFont findfont 17 scalefont setfont % size and place font for use %
gsave 370 85 moveto % bottom left hand corner of crossword %
/M {−153 17 rmoveto show} def % 9 x 17 points to the left: 17 points up %
(xxxxxxxxx) M
(xXXxXxXXx) M
(xXxxxxxXx) M
(xxxXxXxxx) M
(xXxxxxxXx) M
(xxxXxXxxx) M
(xXxxxxxXx) M
(xXXxXxXXx) M
(xxxxxxxxx) M
grestore showpage

○○○○○○○○○○○○○
r r r r r r r
• • • • • • •
○ ○ ○ ○ ○ ○ ○
rrrrrrrrrrrrr
qqqqqqqqqqqqq
qqqqqqqqqqqqq
ppppppppppppp

xxxxxxxxx
xXXxXxXXx
xXxxxxxXx
xxxXxXxxx
xXxxxxxXx
xxxXxXxxx
xXxxxxxXx
xXXxXxXXx
xxxxxxxxx

NEXT

FIRST

BACK

Practical PostScript 39 Cappella Archive

Halftones
 So far, our discussions on PostScript have dealt with the creation of
text and graphics which some may feel might be more easily achieved by
using visual on−screen software, like PageMaker or Illustrator. These
avoid the chore of creating the necessary PostScript code, or the need to
print several proofs to assess any changes. On the other hand, after a few
months of experimentation, most of us settle down to a house style of
half a dozen templates of layout and type face. Consequently, if we can
create our own PostScript procedures, a screen display for text becomes
irrelevant and the hard and software money saved put to better use in a
higher definition printer!
 For those who like self−sufficiency, two further advantages of working
directly in PostScript are the improvement of the default halftone
settings of some software and, for letterpress enthusiasts, the ability to
produce their own half−tone blocks.
 A PostScript halftone screen is made up of a grid of tiny rectangular
cells each containing a number of pixels that can be turned from black to
white according to the intensity of the gray required. All on; black; all
off, white; half on, mid−gray. If you imagine the page covered with
microscopic one−sided dice, then you get the idea. The pixels in each
cell are switched on in a particular sequence according to whether a
spot, line or elliptical screen has been chosen. The cells can be spaced
relatively widely at a frequency of 75 cells (lines) per inch to
compensate for ink spread, as on newsprint, or much more closely for
higher definition on coated paper.
 I used to get confused too. Dots are the maximum number of tiny single
pixels the laser printer can lay down in an inch on the page; lines are the
number of rows of rectangular cells of those pixels that the printer is
told to provide.

NEXT

FIRST

BACK

Practical PostScript 40 Cappella Archive

 Now there are 256 shades of gray in the PostScript repertoire. To print
each one at a suitably high definition, a printer would need 150 cells per
inch, each 16 pixels wide, because 16x16 gives each cell 256 pixels. The
150 lines by 16 pixels gives 2400 dots per inch, which is the basic
imagesetter definition.
 A 1200 dpi printer will have 8x8 pixels available per cell, giving
sixty−four shades of gray; a 600 dpi laser will have 4x4 pixels giving 16
shades; and finally a 300 dpi laser will struggle to have 2x2 pixels per
cell, producing only four shades of gray at 150 lines per inch.
 However, the shades of gray available do increase as the required lines
of cells per inch get less. The white numbers in the mid−gray diagram
below show how many shades of gray are available to a 300 dpi laser
printer as cell pixel numbers reduce or increase when the lines per inch
and their angles change.

LINES PER INCH

 60 75 85 105 120

D
E

G
R

E
E

S

45 33 19 14 8 6

35 26 21 14 8 6

20 30 18 18 11 6

 0 26 17 17 10 5

The screen variations may not be apparent in PDF display

 The diagram tells us that, with so few shades of gray available, a 300
dpi laser printer is going to be pretty feeble at printing a photograph, but

NEXT

FIRST

BACK

Practical PostScript 41 Cappella Archive

that the 85 and 105 frequency screens are adequate as a halftone
background to text and 120 gives an ink wash. The zero angle makes an
imitation of a steel engraved background. The shades available to a 600
dpi printer will be about four times the number shown.
 On a 300 dpi printer the mid−gray tone darkens and banding will
develop as the small number of relatively large pixels clump together
when the lines per inch increase. Anyone proofing halftones on a 300
dpi printer has to beware of this premature darkening; the same grays
will appear much lighter on the imagesetter output. This shortage of
small pixels is one reason for the banding effect which is noticeable on
low frequency inkjet colour printers as each colour jumps from one
shade to the next.
 Incidentally, as Macintosh monitor screen cells are placed at 72 lines
per inch, anyone using non−PostScript QuickDraw graphics should find
a theoretical improvement printing at 96%. The printer works more
accurately at 288 dpi, (4x72), rather than having to scatter the remaining
12 dots when it prints 300 dpi at the normal 100%.
 The little programme below gives a halftone screen definition and then
uses it to produce a film negative for a block in conjunction with −1 1
scale and 1 setgray. The −x flips the text horizontally and the 1 setgray
makes it white. The screen definition can be dropped into any PostScript
file, but remember to type in the frequency and angle numbers you need
before the screen command is issued.
 The gsave and grestore twins are placed round each little procedure
and any departure from the normal default. The moveto x co−ordinates
have to take account of the left−handedness of the minus scaling and go
back to the start of the previous line. The wedge definition is really a
gradient bitmap image command which I will try to explain later,
although the six figure matrix will be discussed next. It is also possible
to change the cells from spot into line and elliptical screens.

NEXT

FIRST

BACK

Practical PostScript 42 Cappella Archive

%!PS HALFTONES
%%Title: HalftoneBlock
%%Creator: Practical PostScript
/asyouwere save def
/F { findfont exch scalefont setfont} def
/screen
{ { dup mul exch dup mul add 1.0 exch sub } setscreen } def % empty brace %

/htbox
{ newpath 5 0 moveto 0 50 rlineto 147 0 rlineto 0 −50 rlineto closepath
gsave 0.7 setgray 120 45 screen fill grestore 0 setgray
0.1 setlinewidth stroke } def

gsave
145 100 translate htbox
137 25 moveto −1 1 scale 1 setgray
24 /Times−Bold F
(LetterPress) show
−134 12 moveto
10 /Times−Bold F
(Makes a Good Impression) show

grestore
gsave
/Pixels 256 string def % reserve some memory %
/wedge { translate scale 106 45 screen image } def % frequency and angle %
0 1 255 { Pixels exch dup put } for % go from 0 pixel to 255 one at a time %
256 1 8 [256 0 0 1 0 0] { Pixels } % 256 pixels long x 1 high; reading 8 bits %
160 25 160 10 wedge % scales: translates %

grestore
showpage
asyouwere restore

LetterPress
Makes a Good Impression

NEXT

FIRST

BACK

Practical PostScript 43 Cappella Archive

 Variables
 To make our PostScript typesetting as flexible as possible, we need to
alter at any time such things as page sizes, margins, fontsizes, and
linespacing. One method is to provide a default value that is auto−
matically assumed whenever a new page is started and then to exchange
that value for another when needed.

/PG { /pg exch def } def 1 PG % default first page number
 A variable instruction has two definitions, one inside the other and
'exch' will pass on to the inner one whatever value is given to the outer.
In this example, the current page number may be changed at any time by
typing, say, 29 PG. Notice that the descriptive letters have to be
different, as a definition cannot redefine itself in the same definition as
it does not yet know what it is meant to be! Traditionally, variables are
given upper case letters in a PostScript file so that they are more easily
identified.

/number { pg pg 1 add PG 4 string cvs } def % increment by 1
 When this numbering procedure is used for the first page, the printer is
given the default pg page value 1 twice. The first is used to increment
the second pg by 1 which is passed to PG to increase pg by 1 for the next
page. The other is stored in 4 bytes of memory and is converted into a
textstring and drawn on the page by cvs. A numbering definition is
included in a footer or header procedure to place it where needed.
 The textbox margins are all variables, although, strictly speaking, they
do not measure the width of margins but set the boundaries of the text
area. Calling them margins is easier to understand. The left and bottom
margins are set at zero so the textbox can be translated into any position
on the paper. Changing the left margin value creates indents or outdents,
whilst raising the bottom margin gives more room for footnotes.

NEXT

FIRST

BACK

Practical PostScript 44 Cappella Archive

/LM {/lm exch def} def 0 LM % left textbox margin
/TM {/tm exch def} def 470 TM % top margin = 6.5" textbox height
/RM {/rm exch def} def 300 RM % right margin = 4.125" textlength
/BM {/bm exch def} def 0 BM % textbox bottom margin
/LG {/lg exch def} def 12 LG % default linespacing

 A textbox definition should include these variables, as well as the
typeface and size, but may also contain such elements as headers or
footers, or a company logo. The textbox is recalled at the start of each
new page so that the defaults are reset.

/textbox {0 BM 0 LM 468 TM 300 RM 12 LG 10 rom lm tm moveto} def
 Alternative textbox values can act as stylesheets, and any changes will
apply to succeeding pages until a different textbox is applied.

NEXT

FIRST

BACK

Practical PostScript 45 Cappella Archive

 Columns and Rules
Ist

 Columns are miniature textboxes and
should specify their own typeface and
linespacing. Traditionally, the column
gutters are set twelve points wide, so we
need to inset the text on either side by six
points. In practice, five points allows for the
thickness of the line and quirks in
justification calculations and the IN
variable has this value.
 The column definitions below divide the
textwidth (rm) in half and then add an IN
value to provide an outset for the vertical
rules if needed. The height of the first
column is held by the VS vertical store
marker and the margins adjusted for the
second column, which is translated into
position.
LR RR 0.2 rule

2nd

 Vertical rules may be used to divide the
columns, and a RR right and LR left hand
vertical rule will run down the page from
the head of the column to the point at
which the RR or LR instruction is specified.
 A horizontal rule not only has to rule the
line, but also reverses backwards half the
current linespacing to place it equally
between the adjoining lines of text. Ac−
cordingly, a halfline advance and reverse
are included in the procedures.
 The thickness of the horizontal line has
also to be specified, such as '0.2 rule'. The
rulealso repositions the baseline of the
following text, using the familiar L
linespacing advance.
RR 0.2 rule nocols

 The columns are opened by typing '1st' and then '2nd' and the full page
width is restored by typing 'nocols'. This instruction is important, as it
closes the previous column 'gsave' with a 'grestore' and restores the
textbox margins. The 1st column procedure stores in VS the current
vertical position on the page so that the 2nd column and any vertical
rules will all start from the same place. The expression 'bind' remembers
the result of calculations for any future use.
 Always type 'nocols' before starting a newpage, as the correct rm width
of the line must be restored beforehand.

NEXT

FIRST

BACK

Practical PostScript 46 Cappella Archive

/H { lg 2 div tm exch sub TM lm tm mt } bind def % forwards half a line %
/B { lg 2 div tm add TM lm tm mt } bind def % backwards half a line %
/set { gsave setlinewidth stroke grestore } bind def % a shorthand instruction %
/IN { /in exch def } def 5 IN % include in a textbox definition as a default %
/VS { tm /vs exch def } def % store current vertical position %

% right and left vertical rules %
/RR { gsave rm in add vs lg 2 div add moveto 0 vs tm sub neg rlineto 0.2 set grestore } def

/LR { gsave lm in sub vs lg 2 div add moveto 0 vs tm sub neg rlineto 0.2 set grestore } def

% horizontal rule: specify rule width: eg. 1.5 rule %
/rule { B gs lm tm moveto textwidth 0 rlineto set gr L} def
/HR { 0.2 rule } def % a default horizontal rule 0.2 pts thick %
/1st { gsave 5 IN rm 2 div in sub RM 10 LG 8 rom lm tm moveto VS } def
/2nd { grestore gsave lm in 2 mul add rm add 0 translate

10 LG 8 rom vs TM lm tm moveto } def
/nocols { LR VS grestore 0 LM 460 TM 300 RM tm vs sub

tm exch sub TM lm tm moveto H } def

NEXT

FIRST

BACK

Practical PostScript 47 Cappella Archive

 Font Matrices

Normally, to get a PostScript printer to turn up a particular typeface, the
following command is issued, with the appropriate point size being used
at #: /FontName findfont # scalefont setfont
 However, every typeface is also made up of a matrix which can be
manipulated to create different effects. A Times Roman 12 point
typeface can therefore be summoned with the incantation:–

/Times−Bold findfont [12 0 0 12 0 0] makefont setfont
 The matrix is made up of two sets of three numbers. Numbers 1 and 4
relate to point size in an x horizontal and a vertical y direction, both of
which scale those positions. Numbers 2 and 3 rotate xy, giving an angle
to the horizontal or vertical and 5 and 6 translate the xy co−ordinates,
effectively moving the chosen letter or word below, above, or to one side
of the baseline.
 Suppose the local sports shop wants a new letterhead. Here is the dull
but worthy original:

Mountaineering
Equipment Ltd.

 We can alter the PostScript matrix to produce a more imaginative effect
by stretching the height of the letters to 16 points and rotating the
horizontal axis:

gsave 300 230 translate /Times−Bold findfont [12 10 0 16 0 0] makefont setfont
0 20 moveto (Mountaineering) show 0 0 moveto (Equipment Ltd.) show grestore

 As you can see, altering the matrix distorts the shape of the character
and, whilst typographical purists may take exception to digital
manipulation of what to them is an art form, modern developments such
as the Panose Typeface Matching System or Adobe Master Fonts are
taking digital font construction to its logical extreme.

NEXT

FIRST

BACK

Practical PostScript 48 Cappella Archive

To make a negative, all we need to do is to reverse the image
by giving the x matrix a minus; print it white with 1 setgray
and place it on a black box. Here is the little programme to
do it. The box has to come first or it will obliterate the
text. Remember to place the gsave/grestore twins
around any translated procedure, so you can
can return to the default co−ordinates.

M
ountaineer

ing

Equipmen
t L

td.

/bbox { newpath 0 0 moveto 0 110 lineto 100 110 lineto
100 0 lineto closepath 0 setgray fill } def

/triangle { newpath 10 10 moveto 10 60 lineto
70 10 lineto closepath 1 setgray stroke } def

/text { 90 30 moveto /Times−Bold findfont
[−12 10 0 16 0 0] makefont setfont
gsave 1 setgray (Mountaineering) show
90 10 moveto (Equipment Ltd.) show grestore } def

/block { bbox triangle text } def
gsave 230 225 translate block grestore showpage

M
ountaineer

ing

Equipmen
t L

td.

 A whole PostScript page can be manipulated with the three commands,
translate, rotate and scale and, by using minus numbers, it is possible to
reverse an image or text with −1 1 scale, but everything in the selected
area is also affected. Often, it is more convenient to use font matrix
inversion, especially if mixed with ordinary text.
 For example, we can take the word Reflections, and give it a stretched
reflection with a minus 30 point y and a minus 25 slant, and colour it
gray. This gives an opportunity to combine all the instructions in a
single definition called reflex, place it on the zero lower left page
co−ordinates and move it wherever we wish with a translate command.

NEXT

FIRST

BACK

Practical PostScript 49 Cappella Archive

/reflex {/Times−Bold findfont 20 scalefont setfont 0 0 moveto (Reflections) show
/Times−Bold findfont [20 0 −25 −30 0 0] makefont setfont
gsave 0.5 setgray 0 0 moveto (Reflections) show grestore} def

gsave 100 100 translate reflex grestore showpage

ReflectionsReflections
 An equally interesting use of font matrices is the ability to manipulate
individual letters to form monograms. I have taken two initials, S, placed
them back to back and superimposed a large J.
/logo {

/Times−Bold findfont [−20 0 0 20 0 0] makefont setfont 1 0 moveto (S) show
/Times−Bold findfont [20 0 0 30 0 0] makefont setfont −5 −3 moveto (J) show
/Times−Bold findfont [20 0 0 20 0 0] makefont setfont 1.7 0 moveto (S) show} def

gsave 300 170 translate 2 2 scale logo grestore showpage

SJS
 Some matrix variations are shown on the next page with their
PostScript instructions. The last example alters the fifth and sixth
numbers and also translates each letter to another position. This could
be useful if you like a life on the ocean wave.

NEXT

FIRST

BACK

Practical PostScript 50 Cappella Archive

%!PS−Adobe−2.0 FONT MATRICES
%%Title: MatrixFun
%%EndComments
%%Prolog
/TR /Times−Roman findfont def
/ms { makefont setfont } def
/column { /lm 0 def /tm 130 def /lg 15 def lm tm moveto } def
/L { tm lg sub /tm exch def lm tm moveto } def
/s /show load /rt /rmoveto load
%%EndProlog
/examples {
column
TR [15 0 0 12 0 0] ms (Fattifers) s L
TR [12 0 0 14 0 0] ms (Thinifers) s L
TR [12 0 0 −12 0 0] ms 0 5 rt (Reflections) s L
TR [−12 0 0 12 0 0] ms 65 0 rt (The Other Way) s L
TR [12 0 5 12 0 0] ms 10 0 rt (Italics) s L
TR [12 −10 0 12 0 0] ms 30 0 rt (Downhill) s L
TR [12 0 −5 12 0 0] ms 15 −10 rt (Slant) s L
TR [12 10 0 12 0 0] ms −12 0 rt (Uphill?) s L
−10 0 rt % move 10 points left %
TR [12 0 0 12 0 −4] ms (W) s
TR [12 0 0 12 0 2] ms (e)s
TR [12 0 0 12 0 4] ms (d)s
TR [12 0 0 12 0 2] ms (i)s
TR [12 0 0 12 0 0] ms (e)s
TR [12 0 0 12 0 −2] ms (o)s
TR [12 0 0 12 0 −4] ms (f)s
TR [12 0 0 12 0 −2] ms (v)s
TR [12 0 0 12 0 0] ms (e)s
TR [12 0 0 12 0 2] ms (r)s
TR [12 0 0 12 0 4] ms (t)s
TR [12 0 0 12 0 2] ms (i)s
TR [12 0 0 12 0 0] ms (g)s
TR [12 0 0 12 0 −2] ms (o)s
} def
gsave 300 300 translate examples grestore
showpage

Fattifers
Thinifers
Reflections

The Other Way
Italics

D
ow

nhill
SlantU

phill
?

We die of vertigo

NEXT

FIRST

BACK

Practical PostScript 51 Cappella Archive

 Bitmaps

 The great advantage PostScript has over earlier forms of computer
printing is that it actually paints very fine lines across the page and does
not rely on reproducing a bitmap of the screen pixels on paper.
However, when PostScript interprets a scanned photograph, or line
drawing, it has to be able to reproduce the bitmaps of the image.
 Scanners record information in either a PICT bitmapped or TIFF tagged
image file format. The PICT files are smaller than TIFF ones, which
usually have a higher resolution. One bit scanning produces a black and
white image; each bit being examined in turn by the printer to see which
of the two colours it has to be, and printed accordingly. A screen pixel,
by the way, is the same as a one point square of 1¤72 of an inch, which
results in a jagged image if scaled upwards in size.
 If you glance back at the bitmapped figure on page 34, you may recall
that the black and white pixels are represented by the zeros and ones of
each byte. You also need to notice that each row has to be in multiples
of four bits, and it is for this reason that the empty zeros are added to the
right of the completed image, producing two four bit bytes.
 There are two important PostScript commands that we need for
printing a bitmapped file. The first is the command image, which also
paints the background on which the bitmapped graphic sits. The second
is imagemask, which can be thought of as a kind of electronic
silkscreening whereby the background can remain the same and only a
foreground colour applied. In other words, imagemask allows over−
printing an existing graphic, whereas image does not.
 For ease of interpretation the binary bites are converted into
hexadecimal numbers and, taking each row of two bytes in turn from the
top, the figure one on page 34 can be represented in hexadecimal by:–

{ <EF CF 8F 0F 8F 8F 8F 8F 8F 8F 8F 8F 8F 8F 07> }

NEXT

FIRST

BACK

Practical PostScript 52 Cappella Archive

 The curly braces denote a data definition and the < > less and greater
symbols are the braces which enclose hexadecimal numbers. However,
if this string was fed to the printer, it would only produce an irregular
line of dots across the page because the interpreter also needs to know
the width and height of the graphic and its proportions. So, in order to
plot the eight bits in each byte in their proper order on the page to
recreate the figure, we have to scale it in the ratio of eight to fifteen as
the original and then feed the interpreter one bit at a time like this:–

8 15 scale 8 15 1 [8 0 0 −15 0 15] The matrix of a
bitmapped image is placed between square brackets and is exactly the
same as the one we created for the font matrix earlier. Put into plain
English, the six figures of a matrix can be explained as: how wide is the
graphic? Does it rotate? How high is the image? Does it move
horizontally or vertically on the page?
 The negative 15 is necessary because we read the bytes from top to
bottom as most scanners do and, because a PostScript printer always
prints the last data received first, the number would otherwise be
printed standing on its head. For the same reason, the final 15 translates
the now upright number fifteen points up the page so that it is lifted
back onto its proper base line. If this were not done, the graphic would
be fifteen points adrift of any text printed in the normal way.
 Most DTP software places the zero co−ordinate at the top left hand
corner of the page instead of the bottom as we do. Accordingly, they do
not need a negative y to turn a scanned−down image the right way up.
Contrariwise, any text placed with the usual findfont command would
be printed upside down. For this reason, DTP application dictionaries
have to use the makefont command in conjunction with a font matrix to
turn text the right way up.
 Here is our complete image instruction, with the necessary gsave −
grestore pair protecting the rest of the page from the translation and

NEXT

FIRST

BACK

Practical PostScript 53 Cappella Archive

scaling. At the moment, this is only suitable for small graphic objects
such as a logo:–
gsave /figure { <EFCF8F0F8F8F8F8F8F8F8F8F8F8F07> } def

100 100 translate 8 15 scale % same width − height ratio as original %
8 15 1 [8 0 0 −15 0 15] % square brackets %
figure image

grestore showpage
 The incoming stream of bits is normally stored in the printer buffer,
which is a kind of holding station whilst the interpreter looks at each
one in turn. However, if the graphic bitmap exceeds the size of the
printer buffer, which is usually the case, except for small items like a
logo, the printer will choke and print only a portion of the illustration.
Accordingly, the interpreter prefers to be spoon−fed with:

/data width string def
As before, the width of the bitmap is in single bits (not bytes). This
instruction parcels the hexadecimal stream of bits into convenient
width−sized portions so that the interpreter can digest it a row at a time.
The image definition for a larger graphic can now be written and the
instruction 8 string, like 24 dict or 68 array, is one that reserves a portion
of printer memory for a particular task. The hexadecimals in this
instance are enclosed in a figure definition:–
gsave /figure {<EFCF8F0F8F8F8F8F8F8F8F8F8F8F07>} def % FIGURE 2a %

100 100 translate 8 15 scale
/data 8 string def8 15 1 [8 0 0 —15 0 15]
figure image

grestore showpage
 So far we have been using the image command and reading each 1 bit
as white and each 0 as a black pixel, producing the black on white figure
2a in the illustration with a white background superimposed on a
previously drawn line. If a one bit scan is read 2 or 4 or 8 bits at a time, a

NEXT

FIRST

BACK

Practical PostScript 54 Cappella Archive

regular pattern of pixels is produced over both the foreground and
background as shown in 2c, 2d and 2e. As the third figure suggests, this
is actually quite a good way of producing a decorative pattern over a
large area; the hexadecimal file is very small but can be scaled to any
size, vertically or horizontally.
 Imagemask takes a similar procedure to image, but normally only
reproduces the foreground shape of the graphic in the chosen colour. In
the first row of the illustration the horizontal line runs uninterruptedly
from left to right, unlike the image background in 2a which obliterates it.
If a background is required, the colour of a background pixel is defined
and then placed after the scaling instruction. However, changing the
image command to imagemask, which we will discuss in a moment, will
not only invert the colours but make the background transparent, as in
2b.

1a 0 setgray imagemask a b c d e
1b ditto 0.9 background
1c 0.5 setgray imagemask
1d ditto 120/45 halftone
1e ditto over black hinting 1

2a 1 bit image
2b figure def: imagemask
2c 2 bits reading: image 2
2d 4 bits reading: image
2e 8 bits reading: image

3 8 bit: 96 x 15 scaling 3
85/45 halftone: image

NEXT

FIRST

BACK

Practical PostScript 55 Cappella Archive

 The image sequence of width, height, and bits read before the [] matrix
is replaced in the imagemask sequence by width, height, and true or
false, according to whether the foreground colour is to be applied or not.
Normally, the hexadecimal string is placed after the matrix with the
command imagemask coming at the end. However, if the hexadecimals
are placed in a figure definition, as we did with the image command on
the previous page, and the instruction figure imagemask given at the
end, the graphic will be printed with inverted foreground and
backgound colours as 2b.
%%BoundingBox: 0 0 8 15 % the same boundaries as scaling %
gsave 120 100 translate 8 15 scale

0 0 moveto 0 1 lineto 1 1 lineto 1 0 lineto closepath
.9 setgray fill % background pixel if needed %
/data 8 string def 0 setgray % foreground colour %
8 15 true [8 0 0 −15 0 15] % sets foreground colour true or false %
{<103070F070707070707070707070F8>} imagemask % FIGURE 1b %

grestore showpage
 I used the boolean concept of true/false when we were discussing the
ifelse command for wordwrap and, broadly speaking, true means do the
expected, whilst false means do the opposite. In this instance, the
foreground pixels will be painted black following a 0 setgray.
There is another reading command that can be used for very large
amounts of data, and this is the instruction readhexstring.
gsave 120 100 translate 8 15 scale

/data 8 string def 0 setgray
8 15 1 [8 0 0 −15 0 15]
{currentfile data readhexstring pop} bind
image {<103070F070707070707070707070F8>}

grestore showpage

NEXT

FIRST

BACK

Practical PostScript 56 Cappella Archive

 This can have its hazards, because the width and length of the data
parcel when multiplied together must have an exact relationship with
the total number of bits being scanned. The instruction pops a boolean
true or false according to the result. If there are any lines too short or left
over, then the printer will read the rest of the file as hexadecimal data;
the letter ees of any following grestore would be read twice as 1110
bytes.
The hexadecimal string can no longer be included in an earlier
definition and there must be no return made between the image
instruction and the string itself, or the interpreter will read it as an End
of File and everything will grind to a halt.

NEXT

FIRST

BACK

Practical PostScript 57 Cappella Archive

 Encapsulation

 An Encapsulated PostScript File is one in which the PostScript code for
either a whole page or a single image is saved as an ASCII text file. This
is often done from a graphics programme, like FreeHand, with an Export
command, or from others, like PhotoShop, from the Save As command.
Its main characteristics are that the normal Header is augmented by an
EPSF instruction and it can imported into most other DTP applications
as an illustration or picture.
 Just as the early engineers created their own sizes of nuts and bolts to
prevent anyone else repairing their machinery, DTP software designers
invent their own idiosyncratic interpretations of the PostScript code to
suit their own applications. To resolve this difficulty of importing and
exporting drawings and text from one alien application to another,
Adobe devised the Encapsulated PostScript file.
 If you examine an exported EPS file, by changing the file Type from
EPSF to TEXT, and open it with a large file text editor like Plain Text,
you will find that most of the file is occupied by the PostScript
dictionary of the application that created it, irrespective of how few of
those commands are actually required. This dictionary has to
accompany the image so that the application into which it is imported
can stop using its own variations of the PostScript commands, draw the
imported image, and then resume its own dictionary to interpret the rest
of the page.
 Because of this intrusion into a world of different definitions and page
defaults, an EPS file has to be isolated by a save ± restore pair, and any
dictionary we may make has to be inserted into the user dictionary of
the printer by the command:–

userdict /minidict 140 dict dup begin put

NEXT

FIRST

BACK

Practical PostScript 58 Cappella Archive

 If we started instead with the usual 'minidict begin' instruction, our
dictionary would be placed inside the DTP application dictionary. This
could produce a clash between our shorthand definitions and those of
the parent application and the rest of the page may not be printed.
Remember that dict, array and string are simply instructions that reserve
some printer memory, and the value shown here should be the same as
that at the head of our own dictionary file. The duplication is necessary
because the begin command uses up one dictionary instruction by
starting the dictionary and another by putting it into memory.
 It is perfectly possible to make our own EPS files to import into
professional software. If we take the little Reflections procedure as an
example, all we need to do is to provide a Header, an accurate Bounding
Box, and make sure that the image is constructed on the zero x and y
co−ordinates at the bottom left hand corner. The Bounding Box size can
be found by previously downloading the file to the printer and
measuring the printed result. For anyone without a typesetting ruler, a
centimetre is about 28 points, but always add a couple of points in each
direction to prevent the image being printed clipped.
 There are two variations of the first line of the EPSF Header. The first
will import into older software and the second 3.0 version is more
recent; if one does not work, try the other. It is a good idea to place the
Bounding Box measurements as soon as possible in the Header. This lets
the host application draw the Bounding Box rectangle and then write in
the Title afterwards. The placing of colons is important and any
dictionary should be placed in the Prolog.
 The EPS file should not contain any translation, rotation or scaling
commands to place it elsewhere on the page. These are provided by the
importing file or application. Neither should there be a showpage
command as this will lead to the printing of two pages; one with the EPS
graphic and the other with the rest of the page. Another point to watch is

NEXT

FIRST

BACK

Practical PostScript 59 Cappella Archive

that the graphic should be constructed on the zero co−ordinate with a 0
0 moveto; this ensures that the image moves to the same place as the
rectangle on the screen page. Finally, if you resize the object, alter the
Bounding Box accordingly.
 Type the EPS file in a text editor, save, and drop it over the icon of
Change Type. Alter the Type box from TEXT to EPSF, or back again if
you need to make any corrections. Open a DTP programme such as
PageMaker, or Home Publisher, and put the EPS file on the page with
Import or Place from the File Menu.
 No picture will be shown but a rectangle the size of the Bounding Box
will appear containing the Title of the graphic as in the illustration
below. Move the image into position on the page in the usual way.
 Some software, like PhotoShop, can only work from a scanned or
imported bitmapped image and will reject a home made EPS file.
However, it is possible to make an on−screen image by using shareware
converters to create a PICT image which can then be imported into
PhotoShop and edited.

NEXT

FIRST

BACK

Practical PostScript 60 Cappella Archive

ON REFLECTIONON REFLECTION

%!PS−Adobe−2.0 EPSF−1.2 (% or use %!PS−Adobe−3.0 EPSF−3.0)
%%BoundingBox: −20 −25 170 20
%%Title: Reflex
%%CreationDate: 21/2/95
%%EndComments
%%Prolog
/defaults save def % place save marker
/SS { {dup mul exch dup mul add 1.0 exch sub} setscreen} def % empty brace
%%EndProlog
/reflect {

/Times−Bold findfont 20 scalefont setfont 0 0 moveto (ON REFLECTION) show
/Times−Bold findfont [20 0 −25 −30 0 0] makefont setfont
106 45 SS 0 0 moveto 0.8 setgray (ON REFLECTION) show} def

gsave 100 100 translate reflect grestore % delete translate for EPSF
showpage defaults restore % delete showpage for EPSF
%%EOF % end of file comment

NEXT

FIRST

BACK

Practical PostScript 61 Cappella Archive

 Making a Typeface

ABCDEFGHIJKLMNOPQRSTUVWXYZ.&

When we were creating the Quad Font, I rather sniffily described
building typefaces as a time−wasting endeavour because so many
hundreds of digitised fonts exist that there is nearly always one suitable
for any work in hand. Contrariwise, I was very taken by a Latin Open
Face fount reproduced in the October 1994 issue of the Small Printer.
 There is an optical illusion of gray shading in the smaller sizes and,
being only an upper case character set, I felt a description of how I went
about it might be useful for anyone wishing to experiment without
resorting to high level typographical software.
 I photocopied the alphabet twice using maximum zoom, until it was
about two inches high, and then scanned each letter, imported it into
FreeHand, and saved the file. Next, I copied and pasted one letter at a
time into the bottom left hand corner of the on−screen page of a new
file. I superimposed rounded lines of a suitable thickness, making the
letters 80 points high. Then, I deleted the scan and saved each new letter
individually as a PostScript file from the Print dialogue box. Any other
graphics application should do this for you, but make sure you ungroup
everything before making the file, or your co−ordinates may be peculiar.
 The bottom left hand corner is where the PostScript zero co−ordinate
normally lives, but you will find that some DTP software, like
PageMaker, places it at the top left hand corner. No matter, place the
scan up there and work off the top edge of the page on the pasteboard. If
you have no scanner, trace the enlarged photocopied letter onto a film
transparency with a thin marker pen, tape it to the screen and work from
behind the tracing.

NEXT

FIRST

BACK

Practical PostScript 62 Cappella Archive

 The next task is to open the lengthy PostScript file with Plain Text or
BBEdit. These are shareware text editors that will open the very large
text files that Teach and Simple Text are unable to do. (They can also
remove all the dross from imported Word and Word Perfect PC files).
Having done this, go to the bottom, copy all the measurements into a
new file and examine them. For example, one of the measurements for
the point (full stop) may look something like this:–

newpath 15.7 8 moveto 6.7 8 lineto closepath
gsave 0.1 setlinewidth 0 setlinecap 0 setlinejoin 3.863693 setmiterlimit
[1 4] setcolor { stroke } fp grestore

 These longwinded commands may be reduced by using the minidict
shorthand versions. However, you will need to increase the sizes tenfold
by moving the decimal point one place to the right or adding a zero if
there isn't one, thus:–

np 157 80 mt 67 80 M
 Building the typeface is very similar to the QuadFont, the main
difference being that each character has its individual Metrics and
BoundingBox measurements and the illustration should explain the
differences between them. To save tedious repetition, I have only given
the sequence for the letter A and a point to give an idea of the order of
events.
 As the typeface is constructed from straight lines, it cannot be
converted into an outline font. To be able to do so would mean
constructing each letter by plotting the succession of lines around the
edges of the character shape and using the fill (inside) or eofill (outside)
commands to paint the appropriate enclosed areas.

NEXT

FIRST

BACK

Practical PostScript 63 Cappella Archive

 A font dictionary is set up, a Type 3 defined and the FontMatrix and
Bounding Box created. The encoding duplicates each letter to produce
the ASCII number, such as A (65), and the letter is given a name, in this
case aye. The FontBounding Box is the area of all the characters piled on
top of one another at 1200 units wide and 1000 units tall.
 Each individual character also has its own Bounding Box. The letter A
for instance, is set in 20 units from the left hand zero origin to avoid any
clipping, is 900 units wide and has the same 800 unit height as the rest
of the characters. The Metrics adds a little extra 160 unit sidebearing
width to the right hand side of the letter, giving an overall width of 1060
units.
 DeskTop printing software applications look up kerning distances in a
separate font metrics table specially designed for the typeface being
used. This automatically varies the sidebearing according to the
combinations of neighbouring letters, but the Metrics seem to work quite
well on their own with most combinations of this little alphabet.
 The character measurements gleaned from the FreeHand file made
earlier are inserted into the CharDefs dictionary. This should include an
empty definition for all the characters that are not defined, as well as the
shorthand definitions for movement, path and linewidth.
 Finally, the BuildChar incantation stores the LineFont in the printer
font cache; /LineFont NewFont definefont creates the typeface, and
/LineFont findfont # scalefont setfont produces it when needed.

 Displayed characters at 7 and 9 points
 PACK MY BOX WITH FIVE DOZEN LIQUOR JUGS.

 PACK MY BOX WITH FIVE DOZEN LIQUOR JUGS.

NEXT

FIRST

BACK

Practical PostScript 64 Cappella Archive

LINEFONT

/Newfont 50 dict def Newfont begin % start a dictionary: reserve memory %
/FontType 3 def % type 3 = home−made typeface %
/FontMatrix [.001 0 0 .001 0 0] def % one thousandth of a point square %
/FontBBox [0 0 1200 1000] def % area of overlapping characters %
/UniqueID 1 def % PostScript fonts are expected to have a unique number %

/Encoding 256 array def 0 1 255 % encode all 256 characters %
{ Encoding exch /.notdef put } for % then encode them all as not defined %
Encoding
dup (A) 0 get /aye put % pair ASCII character with name %

(.) 0 get /point put % no dup for last one %

/BBox 3 dict def BBox begin % increase values to suit number of entries %
/.notdef [0 0 0 0] def
/aye [20 0 900 800] def % size of individual character %
/point [10 0 210 800] defend % complete BoundingBox dictionary %

/Metrics 3 dict def Metrics begin % increase values to suit number of entries %
/.notdef 0 def
/aye 1060 def % character BBox width plus sidebearing %
/point 360 def

end % complete Metrics dictionary %

/CharDefs 10 dict def CharDefs begin % define the shape of each character %
/.notdef { } def % no shape %
/aye {
np 582 790 mt 860 21 M np 385 790 mt 50 0 M
np 403 782 mt 675 16 M np 160 233 mt 584 233 M
np 669 0 mt 875 0 M np 378 788 mt 585 788 M
} def
/point {np 157 88 mt 67 88 M np 157 0 mt 67 0 M } def

end % complete CharDefs dictionary %

/mt /moveto load def /np /newpath load def % abbreviations %
/ct /curveto load def /M { lineto line } def
/line { gsave 35 setlinewidth 1 setlinecap 0 setlinejoin % 45 units for bold %
3.8 setmiterlimit stroke grestore } def

NEXT

FIRST

BACK

Practical PostScript 65 Cappella Archive

/BuildChar { 0 begin
/char exch def
/fontdict exch def
/charname fontdict
/Encoding get char get def
fontdict begin

Metrics charname get 0
BBox charname get aload pop
setcachedevice % put everything in the font cache %
CharDefs charname get exec % exec means 'do it now' %

end end % remove fontdict and Metrics dictionaries %
} bind def

/BuildChar load 0 5 dict put % place dictionaries %
end % complete NewFont dictionary %

/LineFont Newfont definefont pop % give the typeface a name %

NEXT

FIRST

BACK

Practical PostScript 66 Cappella Archive

 1 blue frame 40 IN INSET SB 30 palered FB
% 1 pt blue frame: inset 40 pts: start a box: drop 30 pts: pale red fillbox

Drawing Boxes

OUTSET 5 IN SB % restore original margins: inset text 5 point: start a box

We need three types of box. The first is a black 'coffin' that encloses text
automatically, like this one; the second makes a rectangular outline of
any size, colour, or thickness, and the third provides a background
colour. Both need a startbox SB to store the vertical origin of the box on
the page. Once a box has been drawn or filled, the text is inset all round
by the value of IN. Traditionally this is 6 points or half a gutter's worth,
but if IN is varied, it can alter the box width on the page.

CB % close automatic box: default 0.2 point black outline

SB % start a box

/IN { /in exch def } def 6 IN % 6 points default inset %

/VS { tm /vs exch def } def % vertical store for current height %

/INSET { lm in add LM rm in sub RM lm tm mt } bind def

/OUTSET { lm in sub LM rm in add RM lm tm mt } bind def

/SB { B VS INSET L } bind def % 'SB' starts a box: 'CB' closes it %

/makebox { lm tm rm lm sub 3 sub tm vs sub neg } def

/LB { B OUTSET gs cmyk setlinewidth makebox rectstroke gr L } bind def

/FB { B OUTSET gs 5 −1 roll dup a 5 1 roll cmyk makebox rectfill b gr } bind def

/CB { 0.2 black LB } def % provides a default text outline %
/frame { _Z lg 2 div neg TM LB ZZ } def % outlines text area %

2 green LB % close a green linebox: 2 point outline

NEXT

FIRST

BACK

Practical PostScript 67 Cappella Archive

20 IN INSET SB % inset a box AND text by 20 points

The startbox instruction SB moves backwards halfway
between two lines of text; stores the current vertical
height with VS, insets the text by the value of IN and
advances one line below the box outline As you might
expect, inset has a partner which outsets the text area
and restores the text margins after the box has been
drawn. INSET is also useful on its own to indent the
text all round like this when block quoting entire
paragraphs.
1 red LB OUTSET % 1 point outline: restore margins

5 IN SB % restore default inset value: start a box

The makebox provides the lower and upper co−ordinates of the box
and three points are subtracted from the right hand margin to make
both sides equal. The linebox instruction LB is placed at the end of the
text to be enclosed; sets the width of line and colour; calls up the
makebox co−ordinates; draws the box with rectstroke, and then
restores the previous state of the page. LB needs a linewidth and
colour, such as 0.5 red LB, whilst the closebox CB automatically
provides a default black outline 0.2 points wide. The page frame PF
outlines the entire textbox area of the page.

1 green LB % 1 point green outline

SB 35 paleblue FB H % start a box: 35 point drop: fill with pale blue: half line advance

Unlike LB and CB, the fillbox procedure FB must be typed before
adding text or drawings as an area filled upwards will overprint any
previous text. Guesstimate a drop and correct after proofing.

OUTSET

NEXT

FIRST

BACK

Practical PostScript 68 Cappella Archive

 Placing a Graphic

 There are two ways of placing a graphic. An image that appears on
every page, such as a logo, may be locked permanently into position by a
header or footer definition in the typesetting dictionary, very much like
page numbers. However, when a photograph or line drawing is inserted
into the text on the page, we need to know its height and width so that
the succeeding text can jump downwards the correct distance to start a
new line, or wrap itself to one side or the other.
 Once the dimensions are known, the image may be translated to a
centered position, shifted to either side; or scaled to a more convenient
size. However, the existing page and textbox information must be
protected by a save marker and the minidict removed to avoid its being
over−filled with foreign definitions. After the graphic has been printed,
the typesetting dictionary and previous co−ordinates are restored and
the text moved into position for the next paragraph. It is also useful to
apply a halftone screen, although this may be overriden by any
screening applied in the EPS file itself.
 There are also two types of Encapsulated PostScript File. The first
contains a normal recipe of PostScript curveto's and moveto's, whilst the
second holds a PICT or TIFF illustration which has been rasterised into
its bitmapped pixels by the scanner. In either event, there is a Bounding
Box defining the dimensions of the image in the normal lower left and
upper right hand order, like the flower described on page 10.
 The Bounding Box measurements are printed at the top of the EPS file,
or may found by measuring a proof; one millimetre being 2.8 points. The
upper right hand y height of the image is subtracted from the current
text top margin to give the amount of drop required below any text.
Remember that TM diminishes in value as the text moves down the
page. Similarly the upper right hand x is used to calculate its horizontal

NEXT

FIRST

BACK

Practical PostScript 69 Cappella Archive

placing. To do this, we need some friendly variables:
/URX { /urx exch def } def 0 URX % EPSF BoundingBox width
/URY { /ury exch def } def 0 URY % EPSF BoundingBox height
/SC { /sc exch def } def 1 SC % default scaling: 1 = 100 percent
/SS { 106 45 { dup mul exch dup mul add 1 exch sub } setscreen } def

 The screen is set here for gray halftones of 106 lpi at 45 degrees and the
suggested lines per inch may be altered as required. Similar screens may
be set for coloured images with the angles for each colour customarily
set at successive 30 degree intervals to avoid the moire effect.

/newsize { SC sc mul URY sc mul URX } def % resize if necessary
/middle { rm lm add urx sub 2 div LM } def % centre the graphic on page
/down { tm ury sub TM } def % move down graphic height
/up { tm ury add TM } def % move up graphic height

 The newsize instruction stores the scaling value SC, which is then used
to re−calculate the upper right x and y width and height Bounding Box
dimensions. The image is centred by subtracting the urx width from the
width of the textbox; the distance is then halved, and the left hand
margin of the textbox moves inwards that amount to position the lower
left hand corner of the image.
 The down instruction subtracts the height of the image from the
position of the most recent line of text and TM is given a new value
ready to resume printing the text below the graphic. The up instruction
is a convenient way of returning to the top of the image so that some text
may be placed to the right or left. Typographical pedants may like to
make the ury measurement a multiple of the linespacing so that the lines
of text following the graphic co−incide with those on the facing and
reverse pages.
 If the left margin LM is resized before the graphic is placed then it will
no longer be centered but shifted to the right or left according to the
value given. A minus figure will move the image towards the left hand

NEXT

FIRST

BACK

Practical PostScript 70 Cappella Archive

side of the textbox and a plus conversely towards the right.
 To make life easier, we can combine all the previous instructions into a
place command which also removes the minidict typesetting dictionary
for safety and places a save command to preserve the existing
co−ordinates. Similarly the instructions to re−open the typesetting
dictionary are put together in a text command. The text definition has to
be placed in the userdict so that it can re−introduce the minidict.

/place { newsize middle down _Z lm tm translate sc dup scale SS end } bind def
/text { ZZ minidict begin 0 LM lm tm mt L } def
235 35 0.8 place (return) . . . paste the EPS or image name . . . text like this:

Some bitmapped EPS images are too large to be opened by a normal text
editor. They may be imported by making a copy of the page file; splitting
it at the relevant point, typing the placing values and then using a file
merging utility to insert the EPS graphic. An easier method is to use a
document manager and the Level Two %%IncludeResource facility.

NEXT

FIRST

BACK

Practical PostScript 71 Cappella Archive

 Drop Capitals

DROP caps can be very effective, but the paragraph will have to
be proofed ragged right first to allocate the correct number of
words to the first three lines. This is because the full justify

paragraph command assumes the newly indented left margin to be
constant until it reaches the final point.
 After proofing, use the force justify command fj at the end of the three
lines and then issue the instruction 0 LM followed by a tiny advance
such as '0.1 a' to return the left margin to its correct place ready for the
remainder of the paragraph.
 The font matrices are used to produce an upper case letter that is 3.7
times the linespacing in size and drops downwards twice the
linespacing to bring the bottom of the letter level with the third line of
text. The exact value may vary between typefaces, so a little variation in
values may be necessary.

USING the linespacing command in this way, resizes any letter to
suit the baselines of the text. The instruction '2 string cvs' will
allow the chosen letter to be placed before the definition

command using (U) dc, but type in the font name unless you install it
permanently in front of findfont in the definition. You will also need to
remember to reset the paragraph font size immediately

/dc { findfont lm tm moveto [lg 3.7 mul 0 0 lg 3.7 mul 0 lg 2 mul neg]
makefont setfont 2 string cvs show currentpoint pop LM } def
 % notice the square brackets: insert the correct /FontName before 'dc' %

 % remember to restore the current body text size at the end %
% e.g. 12 LG (U) /Palatino−Roman dc10 rom (SING) green CS L %

NEXT

FIRST

BACK

Practical PostScript 72 Cappella Archive

 Automatic Text Flow
Our final task is to invent a method of automatic text flow. This is done
by making a jump command which looks at the current printing line and
compares it with the bottom margin of the textbox area. If we intercept
the last line before it is printed, the printer can be told to move to the
next column or page. To help us do this, PostScript has two very useful
true/false boolean operators, if and ifelse, which offer a choice of action
when certain criteria occur. Using if in conjunction with the command
gt, (greater than), enables us to jump to a specific page:

/jump { bm tm gt { p2 } if } def
 Alternatively, the ifelse command tells the interpreter to perform a
right hand function until the criteria are met and then do the left hand
one. The instruction:–

{ bm tm gt { jump just } { just } ifelse }
will justify each line until tm reaches zero and then the text will jump to
the next page or column. Each of these may also define its own jump−if
instruction to perform another action. Notice how if and else relate to
the left and right instructions. A mirror instruction, tm bm lt, (less than)
will produce the same effect. Incidentally, as lt, ln, and le are PostScript
system keywords, we must use li as shorthand for lineto, in order to
avoid any conflict of system commands when drawing graphics.
 The jumping definitions are given upper case letters in the typesetting
dictionary whilst non−jumping versions keep their lower case p, j, n
and fj. Use these to prevent newpage jumping at the bottom of a page. To
fix a footnote. place the text with a # TM, which may be a minus
number below the column bottom margin, then an L leading advance,
and use the lower case commands.

NEXT

FIRST

BACK

Practical PostScript 73 Cappella Archive

automatic page numbering

 This is simpler than it looks. The PG variable is given the number 1 as
a default and then the definition adds +1 each time the command is
used, rather as the linespacing value is subtracted from the top margin
when a line is printed. The number definition reserves three bytes of
memory with the instruction 3 string which will allow page numbers in
the hundreds. Alternatively, numbering may start from any chosen
figure by simply typing for example, 29 PG, before the opening or
newpage command. The mysterious cvs converts the page number from
numerical data into text, which is then printed by s for show in the
normal way.
 The numbering instruction will place them on the page and any text
typed in the title and chapter text brackets will miraculously reappear as
running footer comments on every page. Needless to say, they may be
removed by leaving the numbering procedure empty.
 This method of automatic counting is useful for other purposes.
Examples might be the shingling of column positions to compensate for
section creep; the numbering of consecutive invoices or, in combination
with a jump command, multiple tickets on the same page for later
cutting by guillotine.

preserving memory

So far we have been using gsave and grestore's big brothers, save and
restore by placing the marker 'save' in a defaults definition at the
beginning of a file to isolate the file from any previous or subsequent
page defaults. Their purpose is to wield an electronic broom at the end
of a file to clear the printer memory of accumulated digital rubbish
between them. As it is tedious typing '/defaults save def' every time, we
may create an abbreviated version by placing the definition within a
definition:

NEXT

FIRST

BACK

Practical PostScript 74 Cappella Archive

/_Z {/defaults save def} def /ZZ {defaults restore} def
 Save and restore preserve our time an temper when things go wrong;
typing ZZ is much quicker than restarting the printer. However, the use
of save and restore is also important if an Encapsulated PostScript File is
incorporated from another source, say FreeHand or PageMaker. If the
previous condition is not restored, any succeeding text may not print
correctly. The underscore before the save definition distinguishes it from
the use of Z, which is often a common abbreviation in imported files.

scripting commands

To show how easy Direct PostScript is, I shall print the markup codes
that typeset the following text. Macintosh text editors such as BBEdit or
Simple Text only need paragraph codes, but most PC text software
insists on a line feed at the end of each on−screen line. To avoid double
spaces appearing in fully justified text use the sequence: space −
backslash \ − return at the end of each line, as explained in the pages on
linewrapping.
 Book pages have to be 'imposed' as facing pages so that the text jumps
from page to page in a particular order. The '2upPP' imposition in the
dictionary will create 'printer's pairs' of right and left reading pages.
Typing 'newpage' will force a jump to the next page for such things as
chapter headings. Type 'close' at the end of the script to print and close
the file.

NEXT

FIRST

BACK

Practical PostScript 75 Cappella Archive

1upA4 9 bol (printer commands) c 10 rom

(Now that we have made a Direct PostScript typesetting dictionary, we
need to be able to exercise a little more control over the printer itself so
that we may use it more efficiently. First, the typesetting dictionary can
be loaded into the printer at the beginning of a session by using this
command just after the Header of the dictionary file:) J

8 ss (serverdict begin 0 exitserver) c 10 rom

(This produces the very peculiar message 'permanent state may be
changed' from the printer, suggesting that some irreversible indigestion
has occurred. However, this means that the dictionary remains in the
printer memory until it is switched off, and gives the advantage of its not
having to be downloaded with each typeset file.)J

(Remove this instruction if you send anyone a disc or email file with
the dictionary accompanying its associated text. The dictionary will only
need to be used once, and the printer may not print any pages at all.) J

(The ability to switch to and from the manual feed may be found in the
PostScript File Sequence on page 8, as well as a useful command for
increasing the number of copies. These commands may be included
either at the head of the file script or in a Trailer before any 'close'
instruction. Howewver, do not include either if you are using a
PostScript emulator or Distiller.) J

(One problem which does occur with PostScript is that the text
formatting may be affected if a different typeface is substituted for the
one that created the original proofed typeset file. This will almost
certainly produce a different stringwidth for each letter and carefully
placed hyphens or fully justified last lines on the page may be thrown
into disarray.) J

NEXT

FIRST

BACK

Practical PostScript 76 Cappella Archive

(This difficulty also arises when using professional DTP software and
even the same typeface by a different manufacturer may have some
unfortunate effects. On the other hand, the use of automatic text flow
has the advantage of allowing one size of typeface or linespacing to be
substituted for another and the columns and pages will re−arrange and
re−number themselves to compensate automatically for such changes.) J

(To recap. Start the typeset script with a %!PS header followed by
'1upA4' to open the typesetting dictionary. Leave a space before the
closing bracket of the paragraph S, P, and J codes or the last word will
disappear into a digital limbo. A space is not needed before the single
line codes, s, c, n, and r, and adding one may slightly alter the centering
and right justification of the line. Use 'close' to print the last page and
close the file.) J

close

NEXT

FIRST

BACK

Practical PostScript 77 Cappella Archive

 Automatic Footnotes
 The placing of footnotes in a lengthy book is always an awkward
typesetting chore, especially when subsequent editing alters the page
order. The task is made easier by using a mark−up that places each
footnote automatically at the foot of the relevant page. Like this:

20 FN % open a footnote(s): use non−page jumping codes n, p, or j L
(1. A traditional setting for footnotes is one point less than the body text.) p
(2. Superior and inferior figures are usually 65−70% of the normal size.) p
EN % close the footnote

1. A traditional setting for footnotes is one point less than the body text.
2. Superior and inferior figures are usually 65−70% of the normal size.

Open your text file, mark and number the keyword for each footnote by
using *1, *2, etc. Cut the footnotes and paste them into a new file,
numbering each one in the correct sequence, a chapter at a time. Insert
the chosen font size and linespacing 1 for the footnotes.
 Mark−up the footnotes using the non−page jumping codes such as 'p',
and 'j L', or 'n' for short lines, and print a proof. Return to the text file
and paste each footnote between an FN−EN pair immediately before the
paragraph containing the keyword. Search for * stars and replace the
starred keyword numbers with the appropriate superior figure. 2

 If the linespacing of the footnotes is the same as the body text, then the
value given to FN could be a multiple of the linespacing. However, if the
footnotes are set smaller the FN values for various numbers of lines will
need to be found by trial and error.
 Print or distill a proof of the chapter. You may find that if there are
some notes close together in the text, they appear in reverse order at the
foot of the page. In this event, group the footnotes as one unit between
an FN−EN pair as I have done above and increase the FN value to suit
the number of lines.

NEXT

FIRST

BACK

Practical PostScript 78 Cappella Archive

 Sometimes a footnote that has its keyword in the last paragraph on a
page will need inserting two paragraphs in advance to avoid any page−
jumping.
 FN raises the textbox current bottom margin bm; saves the existing
page co−ordinates; inserts a 9 point roman typeface on 11 point line−
spacing; makes the printing line tm equal to the new bm; and inserts a
horizontal rule. 3 The value you give to FN depends on the number of
lines occupied by the footnote(s). The isolating twins gsave and grestore
are abbreviated here to gs − gr.

3. Remove HR from the procedure if the horizontal rule is not needed. The
definition is found under the Columns and Rules section.

/up { gs 0 lg 4 div rmoveto 0.7 dup scale show gr lg 4 div 0 rmoveto } bind def
/dn { gs 0 lg 4 div neg rmoveto 0.7 dup scale show gr lg 4 div 0 rmoveto } bind def
% place inferior text: e.g. (H) s (2) dn (SO)s (4) dn H2SO4

(15) s (23)up (/)s (64) dn 1523 /64

% (Here is some text) S (3) up (containing a superior figure.) S L
Here is some text 3 containing a superior figure.

% notice the space before the text following the superior or inferior figure.
% start footnotes: e.g. 41 FN
/FN { bm add BM _Z 9 rom 11 LG lm bm TM tm mt HR } def
/EN {ZZ 10 rom 13 LG } def % end footnotes: restore body font and linespacing

 A space is necessary in front of the text following a superior or inferior
figure because fractions like 1523 /64 would be difficult to create without a
special expert font. Consecutive figures like 123 would not be possible.
 As a pedantic aside, in professional typesetting parlance, integers are
described as figures, not numbers, and full stops and periods are
similarly both referred to as points.

NEXT

FIRST

BACK

Practical PostScript 79 Cappella Archive

If you copy and paste the Minidct into a file make sure that the % comment lines do not

linebreak. Remove all footer text and page numbers. For the full typesetting Tinydict and the

TinyGuide visit the URL on the last page.

%!PS−Adobe−2.0 A BEGINNER'S MINIDICT
%%Title: minidict
%%Creator: David Byram−Wigfield
%%For: Practical PostScript
%%Date: 15 September 1998
%%EndComments % no colon needed %

%%BeginResource: minidict.ps
userdict begin % store premanent definitions %
/_Z { /defaults save def } def
/ZZ { defaults restore } def

% paper size: use 612 PW 597 PH for US letter %
/PW { /pw exch def } def 597 PW
/PH { /ph exch def } def 842 PH

/1upA4 { _Z minidict begin % single page format %
/p1 { gsave midpage /jump { bm tm gt
{ grestore showpage p1 } if } def } def
p1 } def

% print the last page: close the file
/close { showpage grestore end clear ZZ } def % grestore twins page gsave %
end % the userdict must be closed %

/minidict 40 dict def minidict begin % start a dictionary %
/FM { /fm exch def } def 72 FM % page footer margin %
/TM { /tm exch def } def 680 TM % textbox top margin = height %
/RM { /rm exch def } def 460 RM % right margin = width %
/BM { /bm exch def } def 0 BM % bottom textbox margin: zero %
/LM { /lm exch def } def 0 LM % left textbox margin: zero %
/LG { /lg exch def } def 12 LG % linespacing %

NEXT

FIRST

BACK

Practical PostScript 80 Cappella Archive

% textbox resetter
/textbox { 680 TM 460 RM 0 BM 0 LM 16 LG 12 rom lm tm moveto } def
/midpage { pw rm sub 2 div fm translate textbox } def % centre textbox %
/find { search { pop 3 −1 roll 1 add 3 1 roll } { pop exit } ifelse } def % searcher %
/spacecount { 0 exch () { find } loop } def % count the spaces %
% too many words for the line?
/toofar? { () search pop dup stringwidth pop currentpoint pop add rm gt } def

/a { tm exch sub TM lm tm moveto } bind def % points forwards: e.g. 3 a %
/b { tm add TM lm tm mt } bind def % points backwards: e.g. 5 b %
/H { lg 2 div a } bind def % half line advance %
/B { lg 2 div b } def % half line reverse %
/L { lg a } def % full line advance %
/R { lg b } def % full line reverse %
/newpage { 10 neg TM tm pop jump } def % force a page jump %

/s /show load def % place some text: e.g. (text) s %
/n { show L } def % place the text: advance to next line %
% centre the text: advance to next line
/c { dup stringwidth pop 2 div rm 2 div exch sub lm add tm moveto s L } bind def
% place text: linewrap to next line: page jump
/S { dup spacecount { toofar? { L s s } { jump s s } ifelse } repeat pop } bind def
/CS { gsave cmyk S currentpoint grestore moveto } def % for coloured text %
% linewrap a paragraph: advance to next line: page jump
/P { S L } bind def % tip: use '/P { S L 3 a } def' for paragraph spacing %
% linewrap paragraph: advance a line: no page jumping: use for footnotes
/p { dup spacecount { toofar? { L s s } { s s } ifelse } repeat pop L } bind def
/T { lm pop tm moveto } def % tabs e.g. 100 T (text) s 150 T (last one) n %

NEXT

FIRST

BACK

Practical PostScript 81 Cappella Archive

/F { findfont exch scalefont setfont } def % font abbreviation %
% use correct o/s PostScript font names; e.g. Arial, Stone, etc
/rom { /Times−Roman F }def /bol { /Times−Bold F } def
/it { /Times−Italic F } def /ss { /Helvetica F } def
/si { /Helvetica−Oblique F } def /cr { /Courier F } def

% some colours: these are cmyk values: add your own shades
/red { 0 1 1 0 } def /palered { 0 0.3 0.3 0 } def /blue { 1 1 0 0 } def
/paleblue { 0.3 0 0 0 } def /green { 1 0 1 0 } def /palegreen { 0.3 0 0.3 0 } def
/yellow { 0 0 1 0 } def /paleyellow { 0 0 0.1 0 } def /black { 0 0 0 1 } def
/cmyk /setcmykcolor load def
end % close the minidict: stop defining procedures %
%%EndResource

NEXT

FIRST

BACK

Practical PostScript 82 Cappella Archive

%!PS−Adobe−2.0
%%BoundingBox: 0 0 612 842 % for some viewers %
%%Title: minidict demo
%%Creator: David Byram−Wigfield
%%For: Practical PostScript
%%Date: 15 September 1998
%%EndComments
%%BeginSetup
% paste the Minidict here
1upA4 % open the page format and minidict
%%EndSetup

%%Page: 1 1
9 ss % replace the default font by a 9 pt sans serif

(MINIDICT INSTRUCTIONS) n
L 10 rom % line advance: restore 10 pt roman
(The Minidict Resource enables any beginner in PostScript to place a text frame
on the page and immediately start setting text using simple codes. It also gives a
working area in which to try out simple drawing and experimental procedures.) P

H % empty line advance
(The results may be viewed on screen by using shareware utilities or Distiller in
Adobe Acrobat or printed using a PostScript downloader.) P

H % empty line advance
(The PostScript end of line soft return of space−backslash−return \
is not needed on a Macintosh, but is required by some PCs to avoid a \
double space in each line of text. Make sure that there are no spaces \
at the beginning of each on−screen line. The position of the backslash \
bears no relation to the length of line on the paper.) P

H % empty line advance

NEXT

FIRST

BACK

Practical PostScript 83 Cappella Archive

(Remember to leave a space before a closing paragraph parenthesis and if you
need to use parentheses (brackets) in the text pair them with a backslash \(like
this\). If you use a PostScript level 1 printer interpreter you may need to increase
the reserved memory value over the 26 shown if you get a 'dictfull' error at any
time.) P

(For coloured text use the CS code followed by L if you wish to advance to the
next line.) blue CS L
%%EndPage
%%Trailer
close % print the page: close the file
%%EOF % end of file marker

NEXT

FIRST

BACK

Practical PostScript 84 Cappella Archive

 Distance Printing

 The electronic mail services provided by the Internet are increasingly
popular for the rapid exchange of information and ideas. However, large
amounts of data, such as printing files, have to be compressed and sent
by a method known as the File Transfer Protocol. The wide variety of
software and operating systems in use means that the recipient has to
possess not only a similar application but also an armoury of software
translators, convertors and decompressors able to unscramble the
incoming data.
 One way round these difficulties is to download an Encapsulated
PostScript file, but, as these contain the entire working PostScript
dictionary of the originating application, the files can be very large
indeed. They do have the capability of being opened by a different
application from that which created them, but usually they cannot be
edited in any way, unless converted to be read by Illustrator.
 Apart from software incompatibility, another difficulty with sending
typeset documents is the fact that the recipient is unlikely to possess the
same typefaces as the original document, and, even if they are available,
they may not be from the same manufacturer. Consequently, page
formatting will be thrown into disarray, as discussed earlier.
 One solution has been the invention of HyperText, which uses
paragraph and graphics codings specifically designed for the electronic
publishing of on−screen news sheets and magazines, irrespective of the
make of computer or printer. HyperText provides a cheerful and
colourful presentation on the monitor screen and at the same time the
transmitted text and graphics may be printed by using HyperText codes.
There are two interesting points here. The first is that the interpretation
of the file is no longer dependent on the software that created it; the
second is that recipients can set up a menu of their own available

NEXT

FIRST

BACK

Practical PostScript 85 Cappella Archive

typefaces to suit the codings of the incoming HyperText.
 A development by Adobe, called Acrobat, uses the Portable Document
Format, which is more sophisticated than HyperText, and provides
inter−application translation and Multiple Master Font substitution. If
the typefaces required by the incoming document are unavailable on the
host machine, the software will attempt to match the missing fonts by
producing a digital facsimile, thus maintaining the existing format of the
incoming document. A PDF Reader is needed to print the documents if
no other receptive application is available.
 The Minidict we have built produces application−independent
typseset files that can be printed on a PostScript printer anywhere,
irrespective of the available software. Once the Minidict has been sent to
a recipient, it obviously need not be sent again and merely has to be
pasted at the head of any subsequent incoming coded files.
 Font substitutions may be easily made by grouping alternative
typefaces together in the Minidict, although the default set must be left
unenclosed. This is over−ridden when a grouped set is called up at any
time, or included in the textbox. All coding abbreviations should remain
the same as this allows for instant global changes of style throughout the
document, whether for headers, subheadings or body text.

/GaraGillSet {
/rom { /Garamond−Roman F } def /bol { /Garamond−Bold F } def
/it { /Garamond−Italic F } def /bolit { /Garamond−BoldItalic F } def
/ss { /GillSans F } def /sb { /GillSans−Bold F } def
/si { /GillSans−Italic F } def /sibol{ /GillSans−BoldItalic F } def
} def

/textbox { 0 LM 460 TM 300 RM 0 BM GaraGillSet 11 LG 8 rom lm tm mt } def
 Whilst the font and linespacing defaults may be varied at any time, do
remember that the default typeface in the dictionary textbox will always
open at the top of a new page unless countermanded beforehand by an

NEXT

FIRST

BACK

Practical PostScript 86 Cappella Archive

alternative textbox definition, like this:
/textbox { 0 LM 460 TM 300 RM 0 BM GaraGillSet 11 LG 10 rom lm tm mt } def

 Although primarily intended for typesetting ascii text files, the
Minidict codes also provide an easy method of converting text files into
the Portable Document Format, using Adobe Acrobat Distiller. This is
probably the best way of proofing the typeset text on the monitor screen
and it has the added advantage of enabling the pages to be printed on a
non−PostScript printer such as an inkjet.

'He who first shortened the labour of copyists by device of Moveable Types was .
. . creating a whole new democratic world: he had invented the Art of printing.'

Thomas Carlyle: Sartor Desatus

NEXT

FIRST

BACK

Practical PostScript 87 Cappella Archive

Bibliography
PostScript Tutorial & Cookbook (Blue Book) Addison−Wesley ISBN 0 201 10179 3
PostScript Reference Manual (Red Book) Addison−Wesley ISBN 0 202 18127 4
PostScript Program Design (Green Book) Addison−Wesley ISBN 0 201 14396 8

PostScript by Example − Addison−Wesley ISBN 0 201 63228 4
PostScript Hands−on (Spring) Haydon Book Co. ISBN 0 672 30185 7
PostScript Illustrations (Gosney) Prentice−Hall ISBN 0 13 683 624 0

Software suitable for Direct PostScript
Web sites:
See: /usenet/comp.lang.postscript. FAQs are available from:
http://www.cis.ohio−state.edu/hypertext/faq/usenet/postscript/top.html
http://www.lib.ox.ac.uk/internet/news/faq/comp.lang.postscript.html
http://www.geocities.com/siliconvalley/5682/postscript.html

Text Editors: Macintosh
BBEdit Lite 4.0: Mac sites: or http://www.tiac.net/biz/bbsw/
 This editor has a useful 'Send PostScript' Extension with error reporting.

Text Editors: PC
NoteTab Pro 4.5: http://www.notetab.ch: $19.95 Eric G.V. Fookes.
 Spell checker, thesaurus, text<−>HTML, sort lines, indent, join.
TextCon v1.73: http://www.src.doc.ic.ac.uk/packages/simtel−msdos: $25

Viewing and conversion: Macintosh
PS2EPS+: Mirror sites or http://hem1.passagen.se/ptlerup
 Very fast PS display with MacEPSF, PICT, TIFF, PCX, PCEPSF conversion.
EPStoPICT 1.2.1: Mac mirror sites: or http://users.aol.com/ArtAge/
 Will convert to PICT and TIFF, rasterising from 72 to 360 dpi.

Viewing and conversion: PC
PSalter: http://ds.dial.pipex.com/quite/: A Windows viewer and editing utility.
PrintFile: http://hem1.passagen.se/ptlerup : Freeware printing utility
Preview Lite: Liberty Systems http://www.primenet.com/~liberty

NEXT

FIRST

BACK

Practical PostScript 88 Cappella Archive

Ghostscript for Windows 95: ftp://ftp.cs.wisc.edu/ghost/aladdin/
 UK site is: http://www.tex.ac.uk/tex−archive/

Printer downloading: Macintosh
Let'er RIP! v2.5: http://www.lupinsw.com: document manager facilities.
Adobe Downloader: (Macintosh or Windows): http://www.adobe.com
Drop.PS: Mac sites: or http://www.tiac.net/biz/bbsw/
ShowPages: Mac mirror sites.

Commercial applications:
Streamline: Adobe: Converts scanned PICT or TIFF files to PostScript vectors.
Distiller: Adobe: Portable Document Format PS converter included in Acrobat.
StyleScript: http://www.gdt.com: Macintosh PostScript emulator.
Tailor 2.0: Enfocus Software: http://www.enfocus.com: a PostScript editor.

Cappella Archive Direct PostScript Resources:
http://www.cappella.demon.co.uk/tinyfiles/tinymenu.html

The TinyDict: A 15k application−independent Direct PostScript typesetting dictionary
The TinyGuide: Thirty−six PDF pages of information.
The TinyCodes: The TinyDict typesetting codes

Tiny Impositions for Self−Printing Books
1up Page: Single page for Portable Document Format viewing
2up PDF: For Distilling single PS, EPS, or Tiny pages as 2up PDF
2up Folios: 4 page back/front facing page folios
2up Pairs: facing page pairs for setting printer's pairs
4up Pages: 4up proofs or 2 copies work and turn
8 Pages: 8 page pocketbook folding folios (1 sheet)
16 Nested: 16 page nested sections (2 sheets)
16up Consecutive: 16up TinyTiles for book pagination

NEXT

FIRST

BACK

Practical PostScript 89 Cappella Archive

Tiny Resources
The Colour Resource: For creating colour PDF pages and/or inkjet printing
The Columns Resource: For 2, 3, or 4 column brochures or news sheets
Encoding Resource: Re−encodes Macintosh fonts for ISO Latin−1, smart quotes, etc.

The TinyTables Resource: Plain or boxed fields with vat and total calculation
The Tables Demo: A demonstration using the Minidict

TinyHelps for Self−Printing Book Production
Some of the TinyHelps fold up into an 8 page pocketbook. Open in the Adobe
Reader; print , fold, and staple as directed. The files will print on either A4 or letter
size paper.
TinyHelp 1: Self−Printing Book Production
TinyHelp 2: Laser Printing Books
TinyHelp 3: Sewn and Thermal Binding
TinyHelp 4: Covering and Guillotining
TinyHelp 5: Printing ISBN Barcodes
TinyHelp 6: Making an Electronic Book
More Help: Ascii: octals: FAQ:
The TinyAski: An introduction to the PostScript coding of Ascii text
Octal Encodings: PDF and ISO Latin−1 encoding table with octal numbers
Direct PostScript FAQ: Some questions answered.
A Tiny Test: Test the halftone quality of a printer

Revised April 2000

NEXT

FIRST

BACK

Practical PostScript 90 Cappella Archive

A Beginner's PostScript Glossary
 This list contains only the more common basic commands.

 Refer to the PostScript Reference Manual for official definitions.

add n # add – adds # to n.
arc x y # (radius) # (angle) # (angle) arc – anti−clockwise arc.
bind avoids looking up individual operators in repeating procedures.
clear removes all objects from the stack.
closepath joins the last point to the starting point to enclose a polygon.
currentpoint x y – present position following a moveto.
curveto x y x y x y curveto – think of the second point as a crossing of tangents.
cvs # string cvs – converts data to text.
def /name {procedure} def – creates a definition.
dict /name # dict def – allocates memory for dictionary.
div n # div – divides n by #.
end closes dictionary.
eq # # eq – boolean true/false comparison: equal to.
exch swaps the top two objects on the stack.
fill paints the inside of the enclosed object with the current colour.
ge # # ge – boolean true/false comparison: greater than or equal to.
grestore restores the graphics condition before the previous gsave.
gsave preserves the existing graphics condition.
gt # # gt – boolean true/false comparison: greater than.
if single action following boolean comparisons.
ifelse compares two values and chooses between two courses of action.
le # # le – boolean true/false comparison: less than or equal to.
lineto x y lineto – draws a line to that xy point.
lt # # lt – boolean true/false comparison: less than.
moveto x y moveto – places a new xy starting point.
mul n # mul – multiplies n by #.

NEXT

FIRST

BACK

Practical PostScript 91 Cappella Archive

ne # # eq – boolean true/false comparison: not equal to.
neg n neg – makes n a minus number.
newpath makes a fresh start to draw a graphic object.
pop removes the last item placed on the stack.
repeat # {procedure} repeat – repeats # times.
restore restores the page condition before the previous save marker.
rlineto x y rlineto – draws a line treating the previous point as 0x 0y.
rmoveto x y rmoveto – moves to a new position, treating the previous point as 0x 0y.
roll # # roll – rotates objects on stack
rotate # (angle) rotate – rotates object anti−clockwise.
save places a marker to preserve the existing page condition.
scale x y scale – alters proportions and/or flips horizontally or vertically.
setgray # setgray – sets value of gray between black (0) and white.(1)
setlinewidth # setlinewidth – sets width of line.
setscreen # (frequency) # (angle) {procedure} setscreen – sets halftone values.
show x y moveto (text) show – places text on the page.
showpage prints the page.
string /data # string def – allocates memory for data string.
stringwidth x y– measures the length of a letter, word or line of text in the present font.
stroke x y moveto x y lineto # setlinewidth stroke – draws a line on the page.
sub n # sub – subtracts # from n.
translate x y translate – transfers the existing page x y zero to a new position.
widthshow # 0 32 (text) widthshow – stretches wordspaces by the value provided.

NEXT

FIRST

BACK

Practical PostScript 92 Cappella Archive

Cappella Archive
Book on Demand Limited Editions

Foley Terrace : Great Malvern : WR14 4RQ : UK

byram@cappella.demon.co.uk

 Download Direct PostScript Self−Printing Book Resources from:
 http://www.cappella.demon.co.uk

Typeset in Direct PostScript by the Cappella TinyDict

http://www.cappella.demon.co.uk

	Introduction
	Direct PostScript
	File Structure
	First Principles
	Dictionaries
	Daisy-Chaining
	The Text Box
	Stretching Spaces
	Line Wrapping
	Full Justification
	Errors
	Fonts or Founts?
	Halftones
	Variables
	Columns and Rules
	Font Matrices
	Bitmaps
	Encapsulation
	Making a Typeface
	Drawing Boxes
	Placing a Graphic
	Drop Capitals
	Automatic Text Flow
	Automatic Footnotes
	The Minidict
	Distance Printing
	Bibliography & Utilities
	Glossary
	Colophon

